

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

1

Module – 1
Introduction to HTML

1.1 A Brief Introduction to the Internet,

1.2 WWW,

1.3 Web Browsers and Web Servers,

1.4 URLs,

1.5 MIME,

1.6 HTTP,

1.7 Security,

 1.8 The Web Programmers Toolbox.

1.9 XHTML: Basic syntax,

1.10 Standard structure,

1.11 Basic text markup,

1.12 Images,

1.13 Hypertext Links.

1.1 A BRIEF INTRODUCTION ABOUT THE INTERNET

1.1.1 Origins:

 1960s

o U.S. Department of Defence (DoD) became interested in developing a new large-scale

computer network

o The purposes of this network were communications, program sharing, and remote computer

access for researchers working on defence-related contracts.

o The DoD’s Advanced Research Projects Agency (ARPA) funded the construction of the first

such network. Hence it was named as ARPAnet.

o The primary early use of ARPAnet was simple text-based communications through e-mail.

 late 1970s and early 1980s

o BITNET, which is an acronym for Because It’s Time NETwork, began at the City University

of New York. It was built initially to provide electronic mail and file transfers.

o CSNET is an acronym for Computer Science NETwork. Its initial purpose was to provide

electronic mail.

 1990s

o NSFnet which was created in 1986 replaced ARPAnet by 1990.

o It was sponsored by the National Science Foundation (NSF).

o By 1992 NSFnet, connected more than 1 million computers around the world.

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

2

o In 1995, a small part of NSFnet returned to being a research network. The rest became known

as the Internet.

1.1.2 What the Internet is:

 The Internet is a huge collection of computers connected in a communications network.

 The Transmission Control Protocol/Internet Protocol (TCP/IP) became the standard for computer

network connections in 1982.

 Rather than connecting every computer on the Internet directly to every other computer on the

Internet, normally the individual computers in an organization are connected to each other in a local

network. One node on this local network is physically connected to the Internet.

 So, the Internet is actually a network of networks, rather than a network of computers.

 Obviously, all devices connected to the Internet must be uniquely identifiable.

1.1.3 Internet Protocols (IP) Addresses

 The Internet Protocol (IP) address of a machine connected to the Internet is a unique 32-bit number.

 IP addresses usually are written (and thought of) as four 8-bit numbers, separated by periods.

 The four parts are separately used by Internet-routing computers to decide where a message must go

next to get to its destination.

 Although people nearly always type domain names into their browsers, the IP works just as well.

 For example, the IP for United Airlines (www.ual.com) is 209.87.113.93. So, if a browser is pointed

at http://209.87.113.93, it will be connected to the United Airlines Web site.

1.1.4 Domain names

The IP addresses are numbers. Hence, it would be difficult for the users to remember IP address. To solve

this problem, text based names were introduced. These are technically known as domain name system

(DNS).

These names begin with the names of the host machine, followed by progressively larger enclosing

collection of machines, called domains. There may be two, three or more domain names. DNS is of the form

hostname.domainName.domainName . Example:atme.ac.in The steps for conversion from DNS to IP:

 The DNS has to be converted to IP address before destination is reached.

 This conversion is needed because computer understands only numbers.

 The conversion is done with the help of name server.

 As soon as domain name is provided, it will be sent across the internet to contact name servers.

 This name server is responsible for converting domain name to IP

 If one of the name servers is not able to convert DNS to IP, it contacts other name server.

 This process continues until IP address is generated.

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

3

 Once the IP address is generated, the host can be accessed.

 The hostname and all domain names form what is known as FULLY QUALIFIED DOMAIN

NAME.

This is as shown below:

1.2 The World-Wide Web

1.2.1 Origins

 Tim Berners Lee and his group proposed a new protocol for the Internet whose intention was to

allow scientists around the world to use the Internet to exchange documents describing their work.

 The proposed new system was designed to allow a user anywhere on the Internet to search for and

retrieve documents from the databases on any number of different document-serving computers.

 The system used hypertext, which is text with embedded links to text in other documents to allow

non-sequential browsing of textual material.

 The units of web are referred as pages, documents and resources.

 Web is merely a vast collection of documents, some of which are connected by links.

 These documents can be accessed by web browsers and are provided by web servers.

1.2.2 Web or Internet?

It is important to understand that the Internet and the Web is not the same thing.

 The Internet is a collection of computers and other devices connected by equipment that allows

them to communicate with each other.

 The Web is a collection of software and protocols that has been installed on most, if not all, of the

computers on the Internet.

1.3 Web Browsers

 Documents provided by servers on the Web are requested by browsers, which are programs running

on client machines.

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

4

 They are called browsers because they allow the user to browse the resources available on servers.

 Mosaic was the first browser with a graphical user interface.

 A browser is a client on the Web because it initiates the communication with a server, which waits

for a request from the client before doing anything.

 In the simplest case, a browser requests a static document from a server.

 The server locates the document among its servable documents and sends it to the browser, which

displays it for the user.

 Sometimes a browser directly requests the execution of a program stored on the server. The output of

the program is then returned to the browser.

 Examples: Internet Explorer, Mozilla Firefox, Netscape Navigator, Google Chrome, Opera etc.,

1.4 Web Servers

Web servers are programs that provide documents to requesting browsers. Example: Apache

1.4.1 Web Server Operation:

 All the communications between a web client and a web server use the HTTP

 When a web server begins execution, it informs the OS under which it is running & it runs as a

background process

 A web client or browser, opens a network connection to a web server, sends information requests and

possibly data to the server, receives information from the server and closes the connection.

 The primary task of web server is to monitor a communication port on host machine, accept HTTP

commands through that port and perform the operations specified by the commands.

 When the URL is received, it is translated into either a filename or a program name.

1.4.2 General Server Characteristics:

 The file structure of a web server has two separate directories

 The root of one of these is called document root which stores web documents

 The root of the other directory is called the server root which stores server and its support softwares

 The files stored directly in the document root are those available to clients through top level URLs

 The secondary areas from which documents can be served are called virtual document trees.

 Many servers can support more than one site on a computer, potentially reducing the cost of each site

and making their maintenance more convenient. Such secondary hosts are called virtual hosts.

 Some servers can serve documents that are in the document root of other machines on the web; in

this case they are called as proxy servers

1.4.3 Apache

 Apache is the most widely used Web server.

 The primary reasons are as follows: Apache is an excellent server because it is both fast and reliable.

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

5

 Furthermore, it is open-source software, which means that it is free and is managed by a large team

of volunteers, a process that efficiently and effectively maintains the system.

 Finally, it is one of the best available servers for Unix-based systems, which are the most popular for

Web servers.

 Apache is capable of providing a long list of services beyond the basic process of serving documents

to clients.

 When Apache begins execution, it reads its configuration information from a file and sets its

parameters to operate accordingly.

1.4.4 IIS

 Microsoft IIS server is supplied as part of Windows—and because it is a reasonably good server—

most Windows-based Web servers use IIS.

 With IIS, server behaviour is modified by changes made through a window-based management

program, named the IIS snap-in, which controls both IIS and ftp.

 This program allows the site manager to set parameters for the server.

 Under Windows XP and Vista, the IIS snap-in is accessed by going to Control Panel, Administrative

Tools, and IIS Admin.

1.5 Uniform Resource Locators

 Uniform Resource Locators (URLs) are used to identify different kinds of resources on Internet.

 If the web browser wants some document from web server, just giving domain name is not sufficient

because domain name can only be used for locating the server.

 It does not have information about which document client needs. Therefore, URL should be

provided.

 The general format of URL is: scheme: object-address

 Example: http://www.vtu.ac.in/results.php

 The scheme indicates protocols being used. (http, ftp, telnet...)

 In case of http, the full form of the object address of a URL is as follows:

 //fully-qualified-domain-name/path-to-document

 URLs can never have embedded spaces

 It cannot use special characters like semicolons, ampersands and colons

 The path to the document for http protocol is a sequence of directory names and a filename, all

separated by whatever special character the OS uses. (forward or backward slashes)

 The path in a URL can differ from a path to a file because a URL need not include all directories on

the path

 A path that includes all directories along the way is called a complete path.

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

6

 Example: http://www.atme.in/

 In most cases, the path to the document is relative to some base path that is specified in the

configuration files of the server. Such paths are called partial paths.

 Example: http://www.atme.in/

1.6 Multipurpose Internet Mail Extensions

 MIME stands for Multipurpose Internet Mail Extension.

 The server system apart from sending the requested document, it will also send MIME information.

 The MIME information is used by web browser for rendering the document properly.

 The format of MIME is: type/subtype

 Example: text/html , text/doc , image/jpeg , video/mpeg

 When the type is either text or image, the browser renders the document without any problem

 However, if the type is video or audio, it cannot render the document

 It has to take the help of other software like media player, win amp etc.,

 These software’s are called as helper applications or plugins

 These non-textual information are known as HYPER MEDIA

 Experimental document types are used when user wants to create a customized information & make

it available in the internet

 The format of experimental document type is: type/x-subtype

 Example: database/x-xbase , video/x-msvideo

 Along with creating customized information, the user should also create helper applications.

 This helper application will be used for rendering the document by browser.

 The list of MIME specifications is stored in configuration file of web server.

1.7 The Hyper Text Transfer Protocol

1.7.1 The Request Phase

The general form of an HTTP request is as follows:

1. HTTP method Domain part of the URL HTTP version

2. Header fields

3. Blank line

4. Message body

The following is an example of the first line of an HTTP request: GET /storefront.html HTTP/1.1

Table 1.1 HTTP request methods

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

7

The format of a header field is the field name followed by a colon and the value of the field. There are four

categories of header fields:

1. General: For general information, such as the date

2. Request: Included in request headers

3. Response: For response headers

4. Entity: Used in both request and response headers

A wildcard character, the asterisk (*), can be used to specify that part of a MIME type can be anything.

Accept: text/plain

Accept: text/html  Can be written as  Accept: text/*

The Host: host name request field gives the name of the host. The Host field is required for HTTP 1.1. The

If-Modified-Since: date request field specifies that the requested file should be sent only if it has been

modified since the given date. If the request has a body, the length of that body must be given with a

Content-length field. The header of a request must be followed by a blank line, which is used to separate the

header from the body of the request.

1.7.2 The Response Phase:

The general form of an HTTP response is as follows:

1. Status line

2. Response header fields

3. Blank line

4. Response body

The status line includes the HTTP version used, a three-digit status code for the response, and a short textual

explanation of the status code. For example, most responses begin with the following:

HTTP/1.1 200 OK

The status codes begin with 1, 2, 3, 4, or 5. The general meanings of the five categories specified by these

first digits are shown in Table 1.2.

Table 1.2 First digits of HTTP status codes

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

8

One of the more common status codes is one user never want to see: 404 Not Found, which means the

requested file could not be found.

1.8 Security

Security is one of the major concerns in the Internet. The server system can be accessed easily with basic

hardware support, internet connection & web browser. The client can retrieve very important information

from the server. Similarly, the server system can introduce virus on the client system. These viruses can

destroy the hardware and software in client. While programming the web, following requirements should be

considered:

 Privacy: it means message should be readable only to communicating parties and not to intruder.

 Integrity: it means message should not be modified during transmission.

 Authentication: it means communicating parties must be able to know each other’s identity

 Non-repudiation: it means that it should be possible to prove that message was sent and received

properly

Security can be provided using cryptographic algorithm. Ex: private key, public key Protection against

viruses and worms is provided by antivirus software, which must be updated frequently so that it can detect

and protect against the continuous stream of new viruses and worms.

1.9 The Web Programmer’s Toolbox

 Web programmers use several languages to create the documents that servers can provide to

browsers.

 The most basic of these is XHTML, the standard mark-up language for describing how Web

documents should be presented by browsers. Tools that can be used without specific knowledge of

XHTML are available to create XHTML documents.

 A plug-in is a program that can be integrated with a word processor to make it possible to use the

word processor to create XHTML. A filter converts a document written in some other format to

XHTML.

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

9

 XML is a meta-mark-up language that provides a standard way to define new mark-up languages.

 JavaScript is a client-side scripting language that can be embedded in XHTML to describe simple

computations. JavaScript code is interpreted by the browser on the client machine; it provides access

to the elements of an XHTML document, as well as the ability to change those elements

dynamically.

 Flash is a framework for building animation into XHTML documents. A browser must have a Flash

player plug-in to be able to display the movies created with the Flash framework.

 Ajax is an approach to building Web applications in which partial document requests are handled

asynchronously. Ajax can significantly increase the speed of user interactions, so it is most useful for

building systems that have frequent interactions.

 PHP is the server-side equivalent of JavaScript. It is an interpreted language whose code is

embedded in XHTML documents. PHP is used primarily for form processing and database access

from browsers.

 Servlets are server-side Java programs that are used for form processing, database access, or

building dynamic documents. JSP documents, which are translated into servlets, are an alternative

approach to building these applications. JSF is a development framework for specifying forms and

their processing in JSP documents.

 ASP.NET is a Web development framework. The code used in ASP.NET documents, which is

executed on the server, can be written in any .NET programming language.

 Ruby is a relatively recent object-oriented scripting language that is introduced here primarily

because of its use in Rails, a Web applications framework.

 Rails provides a significant part of the code required to build Web applications that access databases,

allowing the developer to spend his or her time on the specifics of the application without the

drudgery of dealing with all of the housekeeping details.

1.10 Origins and Evolution of HTML and XHTML

HTML  Hyper Text Mark-up Language

XHTML  eXtensible Hyper Text Mark-up Language

1.10.1 HTML versus XHTML

HTML XHTML

HTML is much easier to write XHTML requires a level of discipline many of

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

1
0

us naturally resist

huge number of HTML documents available

on the Web, browsers will continue to support

HTML as far as one can see into the future.

some older browsers have problems with some

parts of XHTML.

HTML has few syntactic rules, and HTML

processors (e.g., browsers) do not enforce the

rules it does have. Therefore, HTML authors

have a high degree of freedom to use their own

syntactic preferences to create documents.

Because of this freedom, HTML documents

lack consistency, both in low-level syntax and

in overall structure.

XHTML has strict syntactic rules that impose a

consistent structure on all XHTML documents.

Another significant reason for using XHTML

is that when you create an XHTML document,

its syntactic correctness can be checked, either

by an XML browser or by a validation tool

Used for displaying the data Used for describing the data

 1.10.2 Basic Syntax

 The fundamental syntactic units of HTML are called tags.

 In general, tags are used to specify categories of content.

 The syntax of a tag is the tag’s name surrounded by angle brackets (< and >).

 Tag names must be written in all lowercase letters.

 Most tags appear in pairs: an opening tag and a closing tag.

 The name of a closing tag is the name of its corresponding opening tag with a slash attached to the

beginning. For example, if the tag’s name is p, the corresponding closing tag is named /p.

 Whatever appears between a tag and its closing tag is the content of the tag. Not all tags can have

content.

 The opening tag and its closing tag together specify a container for the content they enclose.

 The container and its content together are called an element.

 Example: <p> This is ATME Web Programming Notes. </p>

 The paragraph tag, <p>, marks the beginning of the content; the </p> tag marks the end of the

content of the paragraph element.

 Attributes, which are used to specify alternative meanings of a tag, can appear between an opening

tag’s name and its right angle bracket.

 They are specified in keyword form, which means that the attribute’s name is followed by an equal’s

sign and the attribute’s value.

 Attribute names, like tag names, are written in lowercase letters.

 Attribute values must be delimited by double quotes.

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

1
1

 Comments in programs increase the readability of those programs. Comments in XHTML have the

same purpose. They can appear in XHTML in the following form:

 <!- - anything except two adjacent dashes - ->

 Browsers ignore XHTML comments—they are for people only. Comments can be spread over as

many lines as are needed. For example, you could have the following comment:

 <!- - CopyRights.html

This notes is prepared by Kswamy of Computer Science Department ATME, Mysore - ->

1.10.3 Standard XHTML Document Structure

 Every XHTML document must begin with an xml declaration element that simply identifies the

document as being one based on XML. This element includes an attribute that specifies the version

number 1.0.

 The xml declaration usually includes a second attribute, encoding, which specifies the encoding used

for the document [utf-8].

 Following is the xml declaration element, which should be the first line of every XHTML document:

<?xml version = "1.0" encoding = "utf-8"?>

 Note that this declaration must begin in the first character position of the document file.

 The xml declaration element is followed immediately by an SGML DOCTYPE command, which

specifies the particular SGML document-type definition (DTD) with which the document complies,

among other things.

 The following command states that the document in which it is included complies with the XHTML

1.0 Strict standard:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml1-strict.dtd">

 An XHTML document must include the four tags <html>, <head>, <title>, and <body>.

 The <html> tag identifies the root element of the document. So, XHTML documents always have an

<html> tag immediately following the DOCTYPE command, and they always end with the closing

html tag, </html>.

 The html element includes an attribute, xmlns, that specifies the XHTML namespace, as shown in

the following element:

<html xmlns = "http://www.w3.org/1999/xhtml">

 Although the xmlns attribute’s value looks like a URL, it does not specify a document. It is just a

name that happens to have the form of a URL.

 An XHTML document consists of two parts, named the head and the body.

 The <head> element contains the head part of the document, which provides information about the

document and does not provide the content of the document.

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

1
2

 The body of a document provides the content of the document.

 The content of the title element is displayed by the browser at the top of its display window, usually

in the browser window’s title bar.

1.11 Basic Text Markup

We will have a look at a complete XHTML document:

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml1-strict.dtd">

 <!- - complete.html

A document which must be followed throughout the notes - ->

 <html xmlns = "http://www.w3.org/1999/xhtml">

<head>

 <title>

My first program

</title>

</head>

 <body>

<p>

My Dear ATME Friends, All The Best..!! Have a Happy Reading of my notes..!!

</p>

</body>

 </ht ml>

 PLEASE NOTE: From here onwards programming in XHTML will begin. Please add the following

compulsory document structure to all programs in the first 4 lines and skip the simple <html> tag of

first line because I have begun the coding part directly .

<?xml version = "1.0" encoding = "utf-8"?>

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml1-strict.dtd">

 <?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml1-strict.dtd">

 <!- - complete.html

A document which must be followed throughout the notes - ->

 <html xmlns = "http://www.w3.org/1999/xhtml">

<head>

 <title>

My first program

</title>

</head>

 <body>

<p>

My Dear ATME Friends, All The Best..!! Have a Happy Reading of my notes..!!

</p>

</body>

 </html>

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

1
3

<html xmlns = "http://www.w3.org/1999/xhtml">

1.11.1 Paragraphs:

It begins with <p> and ends with </p>. Multiple paragraphs may appear in a single document.

<html>

 <head>

 <title> Paragraph </title>

</head>

<body>

 <p> Paragraph 1 </p>

<p> Paragraph 2 </p>

<p> Paragraph 3 </p>

</body>

 </html>

1.11.2 Line Breaks:

The break tag is specified as
. The slash indicates that the tag is both an opening and closing tag.

<html>

<head>

 <title> br tag </title>

</head>

<body>

<p> My Name is Chethan

I am from CSE Department

ATME, Mysore </p>

 </body>

 </html>

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

1
4

1.11.3 Preserving White Space:

Sometimes it is desirable to preserve the white space in text—that is, to prevent the browser from

eliminating multiple spaces and ignoring embedded line breaks. This can be specified with the <pre> tag.

<html>

 <head>

<title> Pre Tag </title>

 </head>

<body>

 <p><pre> My Name is Chethan

I am from CSE Department

ATME, Mysore </pre></p>

</body>

</html>

1.11.4 Headings:

 In XHTML, there are six levels of headings, specified by the tags <h1>, <h2>, <h3>, <h4>, <h5>,

and <h6>, where <h1> specifies the highest-level heading.

 Headings are usually displayed in a boldface font whose default size depends on the number in the

heading tag.

 On most browsers, <h1>, <h2>, and <h3> use font sizes that are larger than that of the default size of

text, <h4> uses the default size, and <h5> and <h6> use smaller sizes.

 The heading tags always break the current line, so their content always appears on a new line.

 Browsers usually insert some vertical space before and after all headings.

<html>

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

1
5

<head>

<title> Headings </title>

</head>

<body>

 <h1> Heading 1 </h1>

<h2> Heading 2 </h2>

<h3> Heading 3 </h3>

<h4> Heading 4 </h4>

 <h5> Heading 5 </h5>

 <h6> Heading 6 </h6>

 </body>

 </html>

1.11.5 Block Quotations:

The <blockquote> tag is used to make the contents look different from the surrounding text.

<html>

<head>

<title> Blockquotes </title>

</head>

<body>

<p> Swami Vivekananda says </p>

 <blockquote>

 <p> "Arise..!! Awake..!!" </p>

</blockquote>

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

1
6

 <p> He is my Role model </p>

</body>

</html>

1.11.6 Font Styles and Sizes:

 , <i> and <u> specifies bold, italics and underline respectively.

 The emphasis tag, , specifies that its textual content is special and should be displayed in some

way that indicates this distinctiveness. Most browsers use italics for such content.

 The strong tag, is like the emphasis tag, but more so. Browsers often set the content of

strong elements in bold.

 The code tag, <code>, is used to specify a monospace font, usually for program code.

<html>

<head>

 <title> font styles and sizes </title>

</head>

<body>

 <p>

<pre> Illustration of Font Styles

 This is Bold

<i> This is Italics </i>

<u> This is Underline </u>

 This is Emphasis

 This is strong

<code> Total = Internals + Externals //this is code</code>

</pre>

</p>

 <p>

<pre> Illustration of Font Sizes (subscripts and superscripts)

x₂³ + y₁²

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

1
7

</pre>

</p>

 </body>

 </html>

1.11.7 Character Entities:

 XHTML provides a collection of special characters that are sometimes needed in a document but

cannot be typed as themselves.

 In some cases, these characters are used in XHTML in some special way—for example, >, <, and &.

In other cases, the characters do not appear on keyboards, such as the small raised circle that

represents “degrees” in a reference to temperature.

 These special characters are defined as entities, which are codes for the characters. An entity in a

document is replaced by its associated character by the browser.

<html>

 <head>

 <title> Character Entities </title>

 </head>

<body>

<p>

<pre> Illustration of character entities

if you get > 70%, then you will get FCD

if you get < 35%, then you are Fail

½ of my classmates get very good marks

Now, the temperature in Bangalore is 30° C

</pre>

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

1
8

</p>

 </body>

</html>

1.11.8 Horizontal Rules:

 The parts of a document can be separated from each other, making the document easier to read, by

placing horizontal lines between them. Such lines are called horizontal rules.

 The block tag that creates them is <hr />. The <hr /> tag causes a line break (ending the current line)

and places a line across the screen. Note again the slash in the <hr /> tag, indicating that this tag has

no content and no closing tag.

<html>

 <head>

 <title> Horizontal Rule </title>

 </head>

 <body>

 <p>

The ATME Trust was founded in the year 2007 <hr/>

It was founded by our Chairman Mr. L Arun Kumar <hr/>

Mr.K. Shiva Shankar is our Member <hr/>

</p>

</body>

</html>

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

1
9

1.11.9 The meta Element:

 The meta element is used to provide additional information about a document. The meta tag has no

content; rather, all of the information provided is specified with attributes.

 The two attributes that are used to provide information are name and content. The user makes up a

name as the value of the name attribute and specifies information through the content attribute.

 One commonly chosen name is keywords; the value of the content attribute associated with the

keywords are those which the author of a document believes characterizes his or her document.

 An example is

o <meta name = "Title" content = "Programming the Web" />

o <meta name = "Author" content = "Divya K" />

 Web search engines use the information provided with the meta element to categorize Web

documents in their indices.

1.12 IMAGES

 Image can be displayed on the web page using tag.

 When the tag is used, it should also be mentioned which image needs to be displayed. This is

done using src attribute.

 Attribute means extra information given to the browser

 Whenever tag is used, alt attribute is also used.

 Alt stands for alert.

 Some very old browsers would not be having the capacity to display the images.

 In this case, whatever is the message given to alt attribute, that would be displayed.

 Another use of alt is  when image display option has been disabled by user. The option is normally

disabled when the size of the image is huge and takes time for downloading.

<html>

<head>

<title>display image</title>

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

2
0

</head>

 <body>

</body>

</html>

NOTE:

JPEG  Joint Photographic Experts Group

GIF  Graphic Interchange Format

PNG  Portable Network Graphics

XHTML Document Validation:

The W3C provides a convenient Web-based way to validate XHTML documents against its standards.

Step 1: The URL of the service is http://validator.w3.org/file-upload.html. Copy & paste this link.

Step 2: You will be driven to “Validate by File Upload” option automatically.

Step 3: Browse for a XHTML program file in your computer. (example: F:/complete.html)

Step 4: Click on “More Options” and select your criteria like show source

Step 5: After all the settings, click on “Check” button

Now you will be navigated to another page which shows success or failure.

In our example, the file complete.html is a valid XHTML file. So the output shows success..!!

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

2
1

OUT PUT:

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

2
2

1.13 HYPERTEXT LINKS

1.13.1 Links:

 Hyperlinks are the mechanism which allows the navigation from one page to another.

 The term “hyper” means beyond and “link” means connection

 Whichever text helps in navigation is called hypertext

 Hyperlinks cam be created using <a> (anchor tag)

 The attribute that should be used for <a> is href

Program: hyper.html

Program: link.html

After clicking on the above text, we can navigate to another page “link.html” as shown below

<html>

<head>

<title> hyperlink </title>

</head>

 CLICK HERE

</html>

<html>

<body> This is Web Programming

</body>

</html>

M
o

d
u

le
 1

:

 I
n

tr
o

d
u

ct
io

n
 t

o
 H

TM
L

2
3

1.13.2 Targets within Documents:

If the target of a link is not at the beginning of a document, it must be some element within the document, in

which case there must be some means of specifying it.

The target element can include an id attribute, which can then be used to identify it in an href attribute.

(observe the scroll bar in the outputs given)

<html>

<head>

 <title> target link</title>

</head>

 <body>

<h2 id = “avionics”> Avionics </h2>

 What about avionics?

 Avionics

</body>

</html>

Question paper question

1) Give syntax and an example for each of the following tags. 1.<pre> 2.<a> 3. 4.<sub> 5.<p>

(10 M)

2) Explain with an example the following tags 1.select 2.frames 3.colspan 4.radio button 5.style class

selector (10 M)

3) Give and explain syntax of following tags 1.<blockquote> 2.meta (03 M)

4) Explain the following tags with examples i. ii. <a> (04 M)

5) Syntax and an example for each of the following tags. 1.<pre> 2.<p> 3.<sup> 4.<sub>

5.<blackquote> (10 m)

6) Give the standard structure of XHTML document. How line breaks, heading and fonts are handled in

XHTML? (10 M)

7) Explain standard XHTML document structure (08 M)

8) Explain the different image formats, write XHTML document to illustrate use of (with all its

attributes) (08 M)

9) Give the syntactic difference between HTML and XHTML (08 M)

10) Discuss the following tags with syntax and example i) <pre> ii. <meta> (04 M)

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

1

Module – 2
HTML Tables and Forms:

2.1 Lists,

2.2 Tables,

2.3 Forms,

2.4 Frames

2.5 CSS: Introduction,

2.6 Levels of style sheets,

2.7 Style specification formats,

2.8 Selector forms,

2.9 Property value forms,

2.10 Font properties,

2.11 List properties,

2.12 Color,

2.13 Alignment of text,

2.14 The box model,

2.15 Background images,

2.16 The and <div> tags,

2.17 Conflict resolution.

2.1 LISTS

2.1.1 Unordered Lists:

The tag, which is a block tag, creates an unordered list. Each item in a list is specified with an tag

(li is an acronym for list item). Any tags can appear in a list item, including nested lists. When displayed,

each list item is implicitly preceded by a bullet.

<html>

 <head>

 <title> Unordered List </title>

 </head>

<body>

 <h1> Some Common Single-Engine Aircraft </h1>

 Cessna skyhawk

 Beechcraft Bonaza

 piper Cherokee

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

2

</body>

</html>

2.1.2 Ordered Lists:

 Ordered lists are lists in which the order of items is important. This orderedness of a list is shown in

the display of the list by the implicit attachment of a sequential value to the beginning of each item.

The default sequential values are Arabic numerals, beginning with 1. An ordered list is created

within the block tag .

 The items are specified and displayed just as are those in unordered lists, except that the items in an

ordered list are preceded by sequential values instead of bullets.

<html>

 <head>

<title> ordered List </title>

 </head>

<body>

<h3> Cessna 210 Engine Starting Instructions </h3>

 Set mixture to rich

 Set propeller to high RPM

 Set ignition switch to "BOTH"

 Set auxiliary fuel pump switch to "LOW PRIME"

 When fuel pressure reaches 2 to 2.5 PSI, push starter button

</body>

</html>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

3

2.1.3 Nested Lists:

<html>

<head>

<title> nested lists </title>

</head>

 Information Science

OOMD

Java & J2ee

classes and methods

exceptions

applets

servelets

 Computer Networks

Part 1

Part 2

DBMS

Operations Research

 Computer Science

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

4

Compiler Design

FLAT

NFA

DFA

CFG

Computer Graphics

Artificial Intelligence

</html>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

5

2.1.4 Definition Lists:

 As the name implies, definition lists are used to specify lists of terms and their definitions, as in

glossaries. A definition list is given as the content of a <dl> tag, which is a block tag.

 Each term to be defined in the definition list is given as the content of a <dt> tag. The definitions

themselves are specified as the content of <dd> tags.

 The defined terms of a definition list are usually displayed in the left margin; the definitions are

usually shown indented on the line or lines following the term.

<html>

<head>

<title> Definition List </title>

</head>

<body>

<h3> Single-Engine Cessna Airplanes </h3>

<dl >

<dt> 152 </dt>

<dd> Two-place trainer </dd>

<dt> 172 </dt>

<dd> Smaller four-place airplane </dd>

<dt> 182 </dt>

<dd> Larger four-place airplane </dd>

<dt> 210 </dt>

<dd> Six-place airplane - high performance

</dd>

</dl>

</body>

 </html>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

6

2.2 TABLES

A table is a matrix of cells. The cells in the top row often contain column labels, those in the leftmost

column often contain row labels, and most of the rest of the cells contain the data of the table. The content of

a cell can be almost any document element, including text, a heading, a horizontal rule, an image, and a

nested table.

2.2.1 Basic Table Tags:

 A table is specified as the content of the block tag <table>.

 There are two kinds of lines in tables: the line around the outside of the whole table is called the

border; the lines that separate the cells from each other are called rules.

 It can be obtained using border attribute. The possible values are “border” or any number.

 The table heading can be created using <caption> tag.

 The table row can be created using <tr> tag.

 The column can be created either by using <th> tag (stands for table header which is suitable for

headings) or <td> tag (stands for table data which is suitable for other data).

<html>

 <head>

 <title> Table with text and image </title>

</head>

<body>

<table border = "border">

<caption>VTU Memo </caption>

<tr>

<th> VTU </th>

<th> Image </th>

</tr>

<tr>

<td> Funny image </td>

 <td> </td>

 </tr>

<tr>

<td> True Story </td>

<td> </td>

</tr>

 </table>

</body>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

7

 </html>

2.2.2 The rowspan and colspan Attributes:

Multiple-level labels can be specified with the rowspan and colspan attributes.

<html>

<head>

<title>row-span and column-span</title>

</head>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

8

<body>

 <p> Illustration of Row span</p>

 <table border="border">

<tr>

<th rowspan="2"> ATME</th>

 <th>ISE</th>

</tr>

 <tr>

<th>CSE</th>

</tr>

 </table>

 <p> Illustration of Column span</p>

<table border="border">

 <tr>

<th colspan="2"> ATME </th>

</tr>

 <tr>

<th>ISE</th>

 <th>CSE</th>

</tr>

</table>

 </body>

 </html>

2.2.3 The align and valign Attributes:

 The placement of the content within a table cell can be specified with the align and valign attributes

in the <tr>, <th>, and <td> tags.

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

9

 The align attribute has the possible values left, right, and center, with the obvious meanings for

horizontal placement of the content within a cell.

 The default alignment for th cells is center; for td cells, it is left. The valign attribute of the <th> and

<td> tags has the possible values top and bottom.

 The default vertical alignment for both headings and data is center.

<html>

<head>

<title> Align and valign </title>

</head>

<body>

<p>Table having entries with different alignments</p>

<table border="border">

<tr align = "center">

<th> </th>

<th> Column Label </th>

<th> Another One </th>

 <th> Still Another </th>

</tr>

<tr>

<th> Align </th>

<td align = "left"> Left</td>

<td align = "center"> Center </td>

<td align = "right"> right </td>

 </tr>

<tr>

<th>
Valign

</th>

 <td> Deafult </td>

 <td valign = "top"> Top</td>

 <td valign = "bottom"> Bottom</td>

</tr>

</table>

 </body>

</html>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

1
0

2.2.4 The cellpadding and cellspacing Attributes:

Cellspacing is the distance between cells.

Cellpadding is the distance between the edges of the cell to its content.

<html>

<head>

<title> cell spacing and cell padding </title>

</head>

<body>

<h3>Table with space = 10, pad = 50</h3>

 <table border = "7" cellspacing = "10" cellpadding = "50">

<tr>

 <td> Kswamy</td>

<td>Chethan </td>

</tr>

</table>

<h3>Table with space = 50, pad = 10</h3>

<table border = "7" cellspacing = "50" cellpadding = "10">

<tr>

 <td> Divya </td>

 <td>Chethan </td>

 </tr>

 </table>

 </body>

</html>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

1
1

2.2.5 Table Sections:

 Tables naturally occur in two and sometimes three parts: header, body, and footer. (Not all tables

have a natural footer.)

 These three parts can be respectively denoted in XHTML with the thead, tbody, and tfoot elements.

 The header includes the column labels, regardless of the number of levels in those labels.

 The body includes the data of the table, including the row labels.

 The footer, when it appears, sometimes has the column labels repeated after the body.

 In some tables, the footer contains totals for the columns of data above.

 A table can have multiple body sections, in which case the browser may delimit them with horizontal

lines that are thicker than the rule lines within a body section.

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

1
2

2.3 FORMS

The most common way for a user to communicate information from a Web browser to the server is through

a form. XHTML provides tags to generate the commonly used objects on a screen form. These objects are

called controls or widgets. There are controls for single-line and multiple-line text collection, checkboxes,

radio buttons, and menus, among others. All control tags are inline tags.

2.3.1 The <form> Tag:

All of the controls of a form appear in the content of a <form> tag. A block tag, <form>, can have several

different attributes, only one of which, action, is required. The action attribute specifies the URL of the

application on the Web server that is to be called when the user clicks the Submit button. Our examples of

form elements will not have corresponding application programs, so the value of their action attributes will

be the empty string ("").

2.3.2 The <input> Tag:

Many of the commonly used controls are specified with the inline tag <input>, including those for text,

passwords, checkboxes, radio buttons, and the action buttons Reset, Submit, and plain.

 Text Box

o It is a type of input which takes the text.

o Any type of input can be created using <input>

o The type attribute indicates what type of input is needed for the text box, the value should be

given as text.

o For any type of input, a name has to be provided which is done using name attribute.

o The size of the text can be controlled using size attribute.

o Every browser has a limit on the number of characters it can collect. If this limit is exceeded,

the extra characters are chopped off. To prevent this chopping, maxlength attribute can be

used. When maxlength is used, users can enter only those many characters that is given as a

value to the attribute.

<html>

<head>

<title>Text Box</title>

</head>

<body>

<form action = " ">

<p> <label>Enter your Name:

<input type = "text" name = "myname" size = "20" maxlength = "20" />

</label> </p>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

1
3

</form>

</body>

 </html>

2.3.3 Password Box

 If the contents of a text box should not be displayed when they are entered by the user, a password

control can be used.

 In this case, regardless of what characters are typed into the password control, only bullets or

asterisks are displayed by the browser.

<html>

<head>

<title>Password Box</title>

</head>

 <body>

<form action = " ">

<p> <label>Enter the email id:

<input type = "text" name = "myname" size = "24" maxlength = "25" /> </label> </p>

<p> <label>Enter the password:

<input type = "password" name = "mypass" size = "20" maxlength = "20" />

</label> </p>

</form>

</body>

 </html>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

1
4

2.3.4 Radio Button

 Radio buttons are special type of buttons which allows the user to select only individual option

 Radio buttons are created using the input tag with the type attribute having the value radio.

 When radio buttons are created, values must be provided with the help of value attribute.

 All the radio buttons which are created would have same name. This is because the radio buttons are

group elements.

 If one of the radio buttons has to be selected as soon as the web page is loaded, checked attribute

should be used. The value also would be checked.

<html>

<head>

<title>Radio Button</title>

</head>

<body>

<h3>Age Category ?</h3>

<form action = " ">

<p>

<label><input type="radio" name="age" value="under20" checked = “checked”/>0-19 </label>

<label><input type="radio" name="age" value="20-35"/>20-35</label>

<label><input type="radio" name="age" value="36-50"/>36-50 </label>

<label><input type="radio" name="age" value=" over50"/>over50</label>

</p>

</form>

</body>

</html>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

1
5

2.3.5 Check Box

 Check box is a type of input using which multiple options can be selected.

 Check box can also be created using the <input> tag with the type having the value “checkbox”.

 During the creation of check box, the value should be provided using the value attribute.

 All the checkbox which are created would have the same name because they are group elements.

 If one of the check box have to be selected as soon as the page is loaded, checked attribute should be

used with the value checked.

<html>

<head>

<title>Check Box</title>

</head>

<body>

<h3>Grocery Checklist</h3>

<form action = " ">

 <p>

<label><input type="checkbox" name="groceries" value="milk" checked=”checked”/>Milk</label>

<label><input type="checkbox" name=" groceries" value="bread"/> Bread </label>

<label><input type="checkbox" name=" groceries" value="eggs"/>Eggs</label>

 </p>

</form>

</body>

</html>

2.3.6 The <select> Tag:

 Menu items is another type of input that can be created on the page.

 To create the menu item, <select> tag is used.

 To insert the item in the menu, <option> tag is used.

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

1
6

<html>

<head>

<title> Menu </title>

</head>

<body>

<p> ATME Branches - Information Science, Computer Science, Electronics, Electrical, Mechanical </p>

<form action = "">

<p> With size = 1 (the default)

<select name = "branches">

<option> Information Science </option>

<option> Computer Science </option>

<option> Electronics </option>

<option> Electrical </option>

 <option> Mechanical </option>

</select>

 </p>

</form>

</body>

</html>

If you give <select name = "branches" size = “3”>, then you will get a scroll bar instead of drop down menu.

It is as shown in the output given below:

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

1
7

2.3.7 The <textarea> Tag:

 Text area is a type of input using which multiple statements can be entered.

 Text area is created using <textarea> tag.

 Text area should have the name.

 During the creation of text area, it should be mentioned how many sentences can be entered. This is

done using rows attribute.

 Similarly, it should also be mentioned how many characters can be entered in a line. This is done

using cols attribute.

 If the value given to rows is exceeded i.e. if users enter sentences more than specified, the scroll bar

automatically appears.

<html>

<head>

<title> text area </title>

</head>

<body>

<form action=" ">

<h3> Enter your comments</h3>

<p>

<textarea name="feedback" rows="5" cols="100">

(Be Brief and concise)

</textarea>

 </p>

 </form>

</body>

 </html>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

1
8

2.3.8 The Action Buttons:

The Reset button clears all of the controls in the form to their initial states. The Submit button has two

actions: First, the form data is encoded and sent to the server; second, the server is requested to execute the

server-resident program specified in the action attribute of the <form> tag.

The purpose of such a server-resident program is to process the form data and return some response to the

user. Every form requires a Submit button.

The Submit and Reset buttons are created with the <input> tag.

<html>

<head>

<title> action buttons </title>

</head>

<body>

<form action=" ">

<p>

<input type="SUBMIT" value="SUBMIT"/>

<input type="RESET" value="RESET"/>

</p>

</form>

 </body>

</html>

NOTE: A plain button has the type button. Plain buttons are used to choose an action.

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

1
9

2.3.9 Example of a Complete Form:

<html>

<head>

<title> CompleteForm</title>

</head> <body>

<h1>Registration Form</h1>

<form action=" ">

<p> <label>Enter your email id:

<input type = "text" name = "myname" size = "24" maxlength = "25" />

</label> </p>

<p> <label>Enter the password:

<input type = "password" name = "mypass" size = "20" maxlength = "20" />

</label> </p>

<p>Sex</p>

<p>

<label><input type="radio" name="act" value="one"/>Male</label>

<label><input type="radio" name="act" value="two"/>Female</label>

</p>

<p>Which of the following Accounts do you have?</p>

<p>

<label><input type="checkbox" name="act" value="one"/>Gmail</label>

<label><input type="checkbox" name="act" value="two"/>Facebook</label>

<label><input type="checkbox" name="act" value="three"/>Twitter</label>

<label><input type="checkbox" name="act" value="four"/>Google+</label>

</p>

<p> Any Suggestions?</p>

<p> <textarea name="feedback" rows="5" cols="100"> </textarea> </p>

<p>Click on Submit if you want to register</p>

<p> <input type="SUBMIT" value="SUBMIT"/>

<input type="RESET" value="RESET"/>

</p>

</form>

</body>

</html>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

2
0

2.4 FRAMES

The browser window can be used to display more than one document at a time. The window can be divided

into rectangular areas, each of which is a frame. Each frame is capable of displaying its own document.

2.4.1 Framesets:

 The number of frames and their layout in the browser window are specified with the <frameset> tag.

 A frameset element takes the place of the body element in a document. A document has either a body

or a frameset but cannot have both.

 The <frameset> tag must have either a rows or a cols attribute. (or both)

 To create horizontal frames, rows attribute is used.

 To create vertical frames, cols attribute is used.

 The values for these attributes can be numbers, percentages and asterisks.

 Two or more values are separated by commas & given in quoted string.

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

2
1

To Demonstrate Horizontal

Frames using rows Attribute

<html>

<head>

<title>Frameset Rows</title>

</head>

<frameset rows = "*,*">

<frame src = "Framerow1.html"/>

<frame src = ""Framerow2.html"/>

</frameset>

</html>

To Demonstrate Vertical

Frames using cols Attribute

<html>

<head>

<title>Frameset Cols</title>

</head>

<frameset cols

="25%,25%,25%,25%">

<frame src = "FrameCol1.html"/>

<frame src = "FrameCol2.html"/>

<frame src = "FrameCol3.html"/>

<frame src = "FrameCol4.html"/>

</frameset>

</html>

Note: Here, the programs FrameRow1.html, FrameRow2.html, FrameCol1.html, FrameCol2.html,

FrameCol3.html, FrameCol4.html are programs to display images. They must be coded separately.

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

2
2

<html>

<head>

<title>frame row 1</title>

</head>

<body>

<img src="img2.jpg" alt="cannot

display"/>

</body>

</html>

<html>

<head>

<title>frame col 1</title>

</head>

<body>

<img src="img16.jpg" alt="cannot

display"/>

</body>

</html>

<html>

<head>

<title>frame col 3</title>

</head>

<body>

<img src="img14.jpg" alt="cannot

display"/>

</body>

</html>

<html>

<head>

<title>frame row 2</title>

</head>

<body>

<img src="img8.jpg" alt="cannot

display"/>

</body>

</html>

<html>

<head>

<title>frame col 3</title>

</head>

<body>

<img src="img19.jpg" alt="cannot

display"/>

</body>

</html>

<html>

<head>

<title>frame col 4</title>

</head>

<body>

<img src="img6.jpg" alt="cannot

display"/>

</body>

</html>

<html>

 <head>

<title>Frameset Rows and

cols</title>

</head>

<frameset rows = "50,50" cols =

"*,*,*">

<frame src = "FrameCol1.html"/>

<frame src = "FrameCol2.html"/>

<frame src = "FrameCol3.html"/>

<frame src = "FrameCol4.html"/>

<frame src = "FrameRow1.html"/>

<framesrc = "FrameRow2.html"/>

</frameset>

 </html>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

2
3

2.4.2SYNTACTIC DIFFERENCES BETWEEN HTML AND XHTML

PARAMETERS HTML XHTML

Case Sensitivity Tags and attributes names are case

insensitive

Tags and attributes names must be

in lowercase

Closing tags Closing tags may be omitted All elements must have closing tag

Quoted attribute values Special characters are quoted.

Numeric values are rarely quoted.

All attribute values must be quoted

including numbers

Explicit attribute values Some attribute values are implicit.

For example: <table border>. A

default value for border is assumed

All attribute values must be

explicitly stated

id and name attributes Both id and name attributes are

encouraged

Use of id is encouraged and use of

name is discouraged

Element nesting

Rules against improper nesting of

elements (for example: a form

element cannot contain another

form element) are not enforced.

All nesting rules are strictly

enforced

2.5 CSS: Introduction:

XHTML style sheets are called cascading style sheets because they can be defined at three different levels

to specify the style of a document. Lower level style sheets can override higher level style sheets, so the

style of the content of a tag is determined, in effect, through a cascade of style-sheet applications.

2.6 Levels of style sheets:

 The three levels of style sheets, in order from lowest level to highest level, are inline, document

level, and external.

 Inline style sheets apply to the content of a single XHTML element.

 Document-level style sheets apply to the whole body of a document.

 External style sheets can apply to the bodies of any number of documents.

 Inline style sheets have precedence over document style sheets, which have precedence over external

style sheets.

 Inline style specifications appear within the opening tag and apply only to the content of that tag.

 Document-level style specifications appear in the document head section and apply to the entire body

of the document.

 External style sheets stored separately and are referenced in all documents that use them.

 External style sheets are written as text files with the MIME type text/css.

 They can be stored on any computer on the Web. The browser fetches external style sheets just as it

fetches documents.

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

2
4

 The <link> tag is used to specify external style sheets. Within <link>, the rel attribute is used to

specify the relationship of the linked-to document to the document in which the link appears. The

href attribute of <link> is used to specify the URL of the style sheet document.

EXAMPLE WHICH USES EXTERNAL STYLE

SHEET

<html>

<head>

<title>Sample CSS</title>

<link rel = "stylesheet" type = "text/css" href =

"Style1.css" />

</head>

<h1>Kendaganna swamy</h1>

</html>

Style1.css

h1

{

 font-family: 'Lucida Handwriting';

 font-size: 50pt;

 color: Red;

}

EXAMPLE WHICH USES DOCUMENT LEVEL STYLE SHEET

<html>

<head>

<title>Sample CSS</title>

<style type = "text/css">

h1

{

font-family: 'Lucida Handwriting';

font-size: 50pt;

color: Red;

}

</style>

</head>

<h1>Kendaganna swamy</h1>

 </html>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

2
5

EXAMPLE WHICH USES INLINE STYLE SHEET

<html>

<head>

<title>Sample CSS</title>

</head>

<h1 style ="font-family: 'Lucida Handwriting';

font-size: 50pt;

 color: Red;"> Chethan Kswamy</h1>

</html>

2.7 STYLE SPECIFICATION FORMATS

Inline Style Specification:

Style = “Property1 : Value1; Property2 : Value2; Property3 : Value3; Property_n : Value_n;”

Document Style Specification:

<style type = “text/css”> Rule list </style> Each style rule in a rule list has two parts: a selector, which

indicates the tag or tags affected by the rule, and a list of property–value pairs. The list has the same form as

the quoted list for inline style sheets, except that it is delimited by braces rather than double quotes. So, the

form of a style rule is as follows:

Selector { Property1 : Value1; Property2 : Value2; Property3 : Value3; Property_n : Value_n;

}

[For examples on all three levels of style sheets along with specifications, Please refer the previous

examples] .

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

2
6

2.8 SELECTOR FORMS

Simple Selector Forms:

In case of simple selector, a tag is used. If the properties of the tag are changed, then it reflects at all the

places when used in the program.

The selector can be any tag. If the new properties for a tag are not mentioned within the rule list, then the

browser uses default behaviour of a tag.

<html>

<head>

<title>Sample CSS</title>

<style type = "text/css">

p { font-family: 'Lucida Handwriting'; font-size: 50pt; color: Red; }

</style>

</head>

 <body>

 <p>Kendaganna Swamy </p>

<p>Sunil </p>

 <p>Siddiq shariff</p>

</body>

 </html>

Class Selectors:

In class selector, it is possible to give different properties for different elements

<html>

<head>

 <title>Sample CSS</title>

<style type = "text/css">

p.one { font-family: 'Lucida Handwriting'; font-size: 25pt; color: Red; }

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

2
7

p.two { font-family: 'Monotype Corsiva'; font-size: 50pt; color: green; }

</style>

 </head>

<body>

<p class = "one">Kendaganna Swamy</p>

<p class = "two">Sunil</p>

</body>

</html>

Generic Selectors:

In case of generic selector, when the class is created, it would not be associated to any particular tag. In

other words, it is generic in nature.

<html>

<head>

<title>Sample CSS</title>

<style type = "text/css">

.one { font-family: 'Monotype Corsiva'; color: green; }

</style>

</head>

<body>

<p class = "one">KSwamy</p>

<h1 class = "one">Sunil</h1>

<h6 class = "one"> Siddiq </h6>

</body>

</html>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

2
8

id Selectors:

An id selector allows the application of a style to one specific element.

<html>

<head>

<title>Sample CSS</title>

<style type = "text/css">

#one { font-family: 'lucida calligraphy'; color: purple; }

#two { font-family: 'comic sans ms'; color: orange; }

</style>

</head>

<body>

<p id = "two">Kswamy</p>

<h1 id = "one">Sunil</h1>

</body>

 </html>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

2
9

Universal Selectors:

The universal selector, denoted by an asterisk (*), applies its style to all elements in a document.

<html>

<head>

<title>Sample CSS</title>

<style type = "text/css">

* { font-family: 'lucida calligraphy'; color: purple; }

</style>

</head>

<body>

<h1>Kswamy</h1>

<h2>Sunil</h2>

<h3>Siddiq</h3>

<p>Gagana</p>

</body>

 </html>

Pseudo Classes:

Pseudo class selectors are used if the properties are to be changed dynamically.

For example: when mouse movement happens, in other words, hover happens or focus happens.

<html>

<head>

<title>Sample CSS</title>

<style type = "text/css">

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

3
0

input:focus { font-family: 'lucida calligraphy'; color: purple; font-size:100; }

input:hover { font-family: 'lucida handwriting'; color: violet; font-size:40; }

</style>

</head>

 <body>

<form action = " ">

<p>

<label> NAME: <input type = "text" />

 </label>

 </p>

 </form>

 </body>

</html>

STEP 1: Initial

STEP 3: Enter the data

STEP 2:After placing mouse pointer on text area

STEP 4: After taking away the mouse pointer

2.9 PROPERTY VALUE FORMS

CSS includes 60 different properties in seven categories: fonts, lists, alignment of text, margins, colours,

backgrounds, and borders. Property values can appear in a variety of forms.

 Keyword property values are used when there are only a few possible values and they are predefined.

 A number value can be either an integer or a sequence of digits with a decimal point and can be

preceded by a sign (+ or -).

 Length values are specified as number values that are followed immediately by a two-character

abbreviation of a unit name. The possible unit names are px, for pixels; in, for inches; cm, for

centimeters; mm, for millimeters; pt, for points.

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

3
1

 Percentage values are used to provide a measure that is relative to the previously used measure for a

property value. Percentage values are numbers that are followed immediately by a percent sign

(%).Percentage values can be signed. If preceded by a plus sign, the percentage is added to the

previous value; if negative, the percentage is subtracted.

 There can be no space between url and the left parenthesis.

 Color property values can be specified as color names, as six-digit hexadecimal numbers, or in RGB

form. RGB form is just the word rgb followed by a parenthesized list of three numbers that specify

the levels of red, green, and blue, respectively. The RGB values can be given either as decimal

numbers between 0 and 255 or as percentages. Hexadecimal numbers must be preceded with pound

signs (#), as in #43AF00.

2.10 FONT PROPERTIES

Font Families:

The font-family property is used to specify a list of font names. The browser uses the first font in the list that

it supports. For example, the property:

font-family: Arial, Helvetica, Futura

tells the browser to use Arial if it supports that font. If not, it will use Helvetica if it supports it. If the

browser supports neither Arial nor Helvetica, it will use Futura if it can. If the browser does not support any

of the specified fonts, it will use an alternative of its choosing. If a font name has more than one word, the

whole name should be delimited by single quotes, as in the following example:

font-family: ‘Times New Roman’

Font Sizes:

The font-size property does what its name implies. For example, the following property specification sets

the font size for text to 10 points:

font-size: 10pt

Many relative font-size values are defined, including xx-small, x-small, small, medium, large, x-large, and

xx-large. In addition, smaller or larger can be specified. Furthermore, the value can be a percentage relative

to the current font size.

Font Variants:

The default value of the font-variant property is normal, which specifies the usual character font. This

property can be set to small-caps to specify small capital characters. These characters are all uppercase, but

the letters that are normally uppercase are somewhat larger than those that are normally lowercase.

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

3
2

Font Styles:

The font-style property is most commonly used to specify italic, as in

font-style: italic

Font Weights:

The font-weight property is used to specify the degree of boldness, as in

font-weight: bold

Besides bold, the values normal, bolder, and lighter can be specified. Specific numbers also can be given in

multiples of 100 from 100 to 900, where 400 is the same as normal and 700 is the same as bold.

Font Shorthands:

If more than one font property must be specified, the values can be stated in a list as the value of the font

property. The order in which the property values are given in a font value list is important. The order must

be as follows: The font names must be last, the font size must be second to last, and the font style, font

variant, and font weight, when they are included, can be in any order but must precede the font size and font

names.

font: bold 14pt ‘Times New Roman’

<html>

<head>

<title>Font Properties</title>

<style type = "text/css">

p.one

{

 font-family: 'lucida calligraphy';

font-weight:bold;

font-size:75pt;

color: purple;

}

h1.two

{

font-family: 'cambria';

color: violet;

font-style:italics;

}

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

3
3

p.three

{

font: small-caps italic bold 50pt 'times new roman'

}

</style>

</head>

<body>

<p class = "one">Kswamy Chethan</p>

<h1 class = "two">Sunil Kumar </h1>

<p class = "three">Siddiq Shariff</p>

</body>

 </html>

Text Decoration:

The text-decoration property is used to specify some special features of text.

The available values are line-through, overline, underline, and none, which is the default.

<html>

<head>

<title>Text Decoration</title>

<style type = "text/css">

h1.one {text-decoration: line-through;}

h1.two {text-decoration: overline;}

h1.three {text-decoration: underline;}

</style>

</head>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

3
4

<body>

<h1 class = "one">Kswamy Chethan </h1>

<p>[This is line-through]</p>

<h1 class = "two"> Sunil Kumar </h1>

<p>[This is overline]</p>

<h1 class = "three"> Siddiq Shariff </h1>

<p>[This is underline]</p>

</body>

 </html>

2.11 LIST PROPERTIES

Two presentation details of lists can be specified in XHTML documents: the shape of the bullets that

precede the items in an unordered list and the sequencing values that precede the items in an ordered list.

The list-style-type property is used to specify both of these. The list-style-type property of an unordered list

can be set to disc, circle, square, or none.

<html>

<head>

<title>CSS Bullets</title>

<style type = "text/css">

li.one {list-style-type:disc}

li.two{list-style-type:square}

li.three{list-style-type:circle}

</style>

</head>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

3
5

 <body>

 <h3>Crazy Boy’s </h3>

 <li class = "one"> Kendeganna Swamy

<li class = "two"> Sunil Kumar

<li class = "three"> Siddiq Shariff

</body>

</html>

Bullets in unordered lists are not limited to discs, squares, and circles. Any image can be used in a list item

bullet. Such a bullet is specified with the list-style-image property, whose value is specified with the url

form.

<html>

<head>

<title>CSS Bullets-Image</title>

<style type = "text/css">

li.image {list-style-image: url(bullet.png); font-size:25pt;}

</style>

</head>

<body>

<h1>Crazy Boy’s </h3>

 <li class = "image"> Kendeganna Swamy

<li class = "image "> Sunil Kumar

<li class = "image"> Siddiq Shariff

</body>

</html>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

3
6

The following example illustrates the use of different sequence value types in nested lists:

<html>

<head>

<title> CSS nested lists </title>

<style type = "text/css">

ol {list-style-type:upper-roman;}

ol ol {list-style-type:upper-alpha;}

ol ol ol {list-style-type:decimal;}

</style>

</head>

 Information Science

OOMD

Java & J2ee

classes and methods

exceptions

applets

servelets

Computer Networks

Part 1

Part 2

 DBMS

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

3
7

Operations Research

 Computer Science

Compiler Design

FLAT

NFA

DFA

 CFG

 Computer Graphics

Artificial Intelligence

 </html>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

3
8

2.12 COLOR

Color Groups:

Three levels of collections of colours might be used by an XHTML document. The smallest useful set of

colours includes only those that have standard names and are guaranteed to be correctly displayable by all

browsers on all color monitors. This collection of 17 colours is called the named colours.

Larger set of colors, called the Web palette, consists of 216 colors. The colors of the Web palette can be

viewed at http://www.web-source.net/216_color_chart.htm

Color Properties:

The color property is used to specify the foreground color of XHTML elements.

<html>

<head>

<title>Colours</title>

<style type = "text/css">

p.one {color: pink; }

p.two {color: # 9900FF; }

p.three {background-color:#99FF00;}

</style>

</head>

<body>

<p class = "one">Kendaganna Swamy</p>

<p class = "two">Sunil Kumar </p>

<p class = "three">Siddiq Shariff</p>

</body>

</html>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

3
9

2.13 ALIGNMENT OF TEXT

The text-indent property can be used to indent the first line of a paragraph. This property takes either a

length or a percentage value. The text-align property, for which the possible keyword values are left, center,

right, and justify, is used to arrange text horizontally.

The float property is used to specify that text should flow around some element, often an image or a table.

The possible values for float are left, right, and none, which is the default.

<html>

<head>

<title>Text Alignment</title>

<style type = "text/css">

h1.one {text-align: center}

p.two {text-indent: 0.5in; text-align: justify;}

img{float:right}

</style>

</head>

<body>

<h1 class = "one">VTU Facts</h1>

<p>

 </p>

<p class = "two">Visvesvaraya Technological University (VTU) is a collegiate public state university in

Karnataka State, India. It was established on 1 April 1998 by the Government of Karnataka as per VTU Act

1994, to improve the quality of technical education in the state. Apart from a few notable exceptions, VTU

has complete authority in the state of Karnataka. It is a statutory requirement for colleges offering any

program in engineering or technology in the state to be affiliated with the university.

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

4
0

The university is named after Sir Visvesvaraya from Karnataka, the only engineer to be awarded a Bharat

Ratna award, the highest civilian award in India. Jnana Sangama, Belgaum is the headquarters of VTU.

Additionally, the university has three regional centers located in Bangalore, Gulbarga and Mysore.

VTU is one of the largest universities in India with 208 colleges affiliated to it with an intake capacity of

over 67100 undergraduate students and 12666 postgraduate students. The university encompasses various

technical & management fields which offers a total of 30 undergraduate and 71 postgraduate courses. The

university has around 1800 PhD candidates.</p>

</body>

</html>

2.14 THE BOX MODEL

 On a given web page or a document, all the elements can have borders.

 The borders have various styles, color and width.

 The amount of space between the content of the element and its border is known as padding.

 The space between border and adjacent element is known as margin.

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

4
1

Borders:

Border-style

 It can be dotted, dashed, double

 Border-top-style

 Border-bottom-style

 Border-left-style

 Border-right-style

Border-width

 It can be thin, medium, thick or any length value

 Border-top-width

 Border-bottom-width

 Border-left-width

 Border-right-width

Border-color

 Border-top-color

 Border-bottom-color

 Border-left-color

 Border-right-color

<html>

<head>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

4
2

<title> Table with border effects </title>

<style type = "text/css">

table

{

border-width:thick;

border-top-color:red;

border-left-color:orange;

border-bottom-color:violet;

border-right-color:green;

border-top-style:dashed;

border-bottom-style:double;

border-right-style:dotted;

}

</style>

</head>

<body>

<table border = "border">

<caption>VTU </caption>

<tr>

<td> VTU Memo </td>

<td> </td>

</tr>

</table>

</body>

</html>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

4
3

Margins and Padding:

The margin properties are named margin, which applies to all four sides of an element: margin-left, margin-

right, margin-top, and margin-bottom.

The padding properties are named padding, which applies to all four sides: padding-left, padding-right,

padding-top, and padding-bottom.

<html>

<head>

<title> Margins and Padding </title>

<style type = "text/css">

p.one

{

margin:0.1in;

padding:0.5in;

background-color:#FF33FF;

border-style:dotted;

}

p.two

{

margin:0.5in;

padding:0.1in;

background-color:#00FF33;

border-style:dashed;

}

 p.three

{

margin:0.3in;

background-color:#FFFF00;

}

p.four

{

padding:0.3in;

background-color:#FF9900;

}

</style>

</head>

<body>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

4
4

<p class = "one"> 3MONTHS OF LECTURE! 3WEEKS OF INTERNAL TESTS!

[margin=0.1in, padding=0.5in]</p>

<p class = "two"> 3DAYS OF STUDY!

[margin=0.5in, padding=0.1in]</p>

<p class = "three"> 3HRS OF EXAMS!

[margin=0.3in, no padding, no border]</p>

<p class = "four"> 3MINS OF CORRECTION IS WAT WE CALL

[no margin, padding=0.3in, no border]</p>

</body>

 </html>

2.15 BACKGROUND IMAGES

The background-image property is used to place an image in the background of an element.

<html>

<head>

<title>Background Image</title>

<style type = "text/css">

body {background-image:url(bk.jpg);}

p {text-align: justify; color:white;font-size:25pt;}

</style>

</head>

<body>

<p class = "two">Visvesvaraya Technological University (VTU) is a collegiate public state university in

Karnataka State, India. It was established on 1 April 1998 by the Government of Karnataka as per VTU Act

1994, to improve the quality of technical education in the state. Apart from a few notable exceptions, VTU

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

4
5

has complete authority in the state of Karnataka. It is a statutory requirement for colleges offering any

program in engineering or technology in the state to be affiliated with the university.

The university is named after Sir Visvesvaraya from Karnataka, the only engineer to be awarded a Bharat

Ratna award, the highest civilian award in India. Jnana Sangama, Belgaum is the headquarters of VTU.

Additionally, the university has three regional centers located in Bangalore, Gulbarga and Mysore.

VTU is one of the largest universities in India with 208 colleges affiliated to it with an intake capacity of

over 67100 undergraduate students and 12666 postgraduate students. The university encompasses various

technical & management fields which offers a total of 30 undergraduate and 71 postgraduate courses. The

university has around 1800 PhD candidates.</p>

 </body>

</html>

In some time, the background image is replicated as necessary to fill the area of the element. This

replication is called tiling. Tiling can be controlled with the background-repeat property, which can take the

value repeat (the default), no-repeat, repeat-x, or repeat-y. The no-repeat value specifies that just one copy of

the image is to be displayed. The repeat-x value means that the image is to be repeated horizontally; repeat-y

means that the image is to be repeated vertically. In addition, the position of a non-repeated background

image can be specified with the background-position property, which can take a large number of different

values. The keyword values are top, center, bottom, left, and right, all of which can be used in many

different combinations.

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

4
6

2.16 THE AND <div> TAGS

In many situations, we want to apply special font properties to less than a whole paragraph of text.

The tag is designed for just this purpose.

<html>

<head>

<title>span</title>

<style type = "text/css">

.spanviolet {font-size:25pt;font-family:'lucida calligraphy';color:violet;}

</style>

</head>

<body>

<p > The university is named after

 Sir Visvesvaraya

, from Karnataka, the only engineer to be awarded a Bharat Ratna award. </p>

</body>

 </html>

It is more convenient, however, to be able to apply a style to a section of a document rather than to each

paragraph. This can be done with the <div> tag. As with , there is no implied layout for the content

of the <div> tag, so its primary use is to specify presentation details for a section or division of a document.

<html>

<head>

<title>div</title>

<style type = "text/css">

.one {font-size:20pt;font-family:'lucida calligraphy';color:violet;}

.two {font-size:25pt;font-family:'comic sans ms';color:green;}

</style>

</head>

<body>

<div class = "one">

<p>Paragragh 1 under division 1</p>

<p>Paragragh 2 under division 1</p>

<p>Paragragh 3 under division 1</p>

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

4
7

</div>

<div class = "two">

<p>Paragragh 1 under division 2</p>

<p>Paragragh 2 under division 2</p>

<p>Paragragh 3 under division 2</p>

</div>

 </body>

 </html>

2.17 CONFLICT RESOLUTION

 Sometimes on a web page, there can be two different values for the same property on the same

element leading to conflict.

 h3 {color: blue;}

body h3 {color: red;}

 The browser has to resolve this conflict.

 There can be one or more type of conflict: i.e. when style sheets at 2 or more levels specify different

value for same property on some element.

 This conflict is resolved by providing priority to the different levels of style sheets.

 The inline level gets the highest priority over the document level.

 The document level gets the higher priority over the external level

 But the browser must be able to resolve the conflict in the first example using same technique.

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

4
8

 There can be several different origins of the specification of property values.

 One of the value may come from a style sheet created by the author or it can be specified by the user

using the options provided by the browser.

 The property values with different origin have different precedence.

 The precedence can also be set for a property by marking it as important.

 p.special {font-style: italic !important; font-size: 14}

 This means that font-style:italic is important [this is known as weight of specification]

 The process of conflict resolution is a multi-stage sorting process.

 The first step is to gather information about levels of style sheet.

 Next, all the origins and weights are sorted. The following rules are considered:

1. Important declarations with user origin

2. Important declarations with author origin

3. Normal declarations with author origin

4. Normal declarations with user origin

5. Any declarations with browser (or other user agent) origin

 If there are other conflicts even after sorting, the next step is sorting by specificity. Rules are:

1. id selectors

2. Class and pseudo class selectors

3. Contextual selectors (more element type names means that they are more specific)

4. Universal selectors

 If there still conflicts, they are resolved by giving precedence to most recently seen specification.

Question paper questions :

a) Write an XHTML document to describe an ordered list of your five favorite movies. Each element of

the list must have a nested list of at least two actors in your favorite movies. (05 M)

b) With examples, explain a style class selector. (05 M)

c) Write an XHTML document that has six short paragraphs of text. Define three different paragraph

styles p1, p2 and p3. The p1 style must use left and right margins of 20 pixels, a background colou r

of yellow, and a foreground color of blue . The p2 style must use font size of 18 points, font name

‘Arial’ and a font style in italic form. The p3 style must use a text indent of 1 centimeter , a

background color of green, and a foreground color of white. The 1st and the 4th paragraph must use

p1, the 2nd and 5th must use p2 and the 3rd and 6th must use p3. (10 M)

d) Explain the following with respect to table creation in XHTML documents: Align and valign

attributes tr, th and td attributes Rowspan and Colspan attributes Cell padding and Cell spacing

attributes (10 M)

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

4
9

e) Create XHTML document to describe a table with the following contents: The columns of the table

must have the headings pine, maple, Oak and fir. The rown must have the labels average height,

average width, typical lifespan, and leaf type. Fill the data cells with some values. (10 M)

f) Explain the syntactic differences between HTML and XHTML (05 M)

g) What tag and attribute are used to describe a link? Discuss about it. (04 M)

h) Explain all controls that are created with the <input> tag with examples, which are used for text

collection. (08 M)

i) Explain the XHTML tags used for lists in documents (08 M)

j) Write an XHTML program to create a link within a document (04 M)

k) Create XHTML document that defines a table with 5 rows and 5 columns. The first row should

contain country name, gold, silver, bronze (all three indicating the type of medals) and total in each

column respectively. Fill in the information details in the table with appropriate values. After filling

the details, set red color to the background for the first row, blue for the second, yellow for the third,

purple for the fourth and green for the fifth row. Use of align and valign attributes for this table has

to be made at the appropriate places (10 M)

l) How lists are handled in XHTML? Design an XHTML code to illustrate nested lists (10 M)

m) Design an XHTML code to construct a simple class time table to illustrate table handling (10 M)

n) Write a XHTML program to create a table with 2 levels of column label an overall label, meals and 3

secondary labels of much breakfast, lunch and dinner. There must be 2 level of row labels: an overall

label, food and 4 secondary labels, bread, main cause, vegetables and dessert. The cell of table must

contain a number if grams for each category of the food.(12 M)

o) Explain the different levels of style sheets available in CSS (04 M)

p) Create XHTML document that contain student information via name, USN, subject 1, subject 2 and

subject 3. Insert values for each student in five rows. Also row background of each student should be

in the different color (08 M)

q) Explain the following tags

i. <select> ii. <Frame> ii. <text area> (08 M)

r) What are selector forms? Explain the different levels of selector forms available in CSS with

example (08 M)

s) Write document level style sheet to illustrate pseudo classes. Discuss the conflict resolution in

CSS(08 M)

t) Create an XHTML document that includes atleast 2 images and enough text to precede the images,

flow around them (one on left and one on right) and continue after the last image (Note : Use CSS

tags) (04 M)

u) Write an XHTML document to describe an ordered list of four states. Each element of the list must

have an unordered list of at least two cities in the state. (05 M)

M
o

d
u

le
 2

:

 H
TM

L
Ta

b
le

 a
n

d
 F

o
rm

s

5
0

v) Explain the following , with respect to table creation in XHTML documents.

i. <table> ii. tr, th and td attributes iii. rowspan and colspan attributes

iv. align and valign attributes v. cell padding and cell spacing (10 M)

w) Create XHTML document that has two frames. The left frame displays contents.html and the right

frame displays cars.html where the second frame is a target of link from the first frame. [Note:

contents.html is a list of links to the cars description.] (05 M)

x) Create , test and validate a XHTML document that has a form with

i. Three text boxes to collect user name and address.

ii. Tables with the headings product name , price and quantity and the values are

100—watts light bulb, $2.39 , 4

200—watts light bulb, $4.29 , 8

100—watts long life light bulbs, $3.95 , 4

200—watts long life light bulbs, $7.49 , 8

iii. A collection of 4 radio buttons that are labeled as Visa Master card Discover Check

iv. A submit and a reset button (10 M)

JavaScript for Beginners
Course notes

JavaScript for Beginners 2

1 What is a Programming Language? ...5
Key Points ... 5

2 Server-side vs. Client-side ...7
Key Points ... 7

3 About JavaScript ..10
Key Points ... 10

4 A Tour of JavaScript...13
Key Points ... 13
Project.. 13

5 Objects, Properties and Methods ..18
Key Points ... 18

6 Assigning Values to Properties ...21
Key Points ... 21
Project.. 22

7 About Comments..25
Key Points ... 25
Project.. 26

8 Hiding Scripts from Older Browsers ..28
Key Points ... 28
Project.. 29

9 Automatically Redirecting the User ...31
Key Points ... 31
Project.. 31

10 Alert, Prompt and Confirm ...33
Key Points ... 33
Project.. 34

11 Variables and Operators ..35
Key Points ... 35
Project.. 38

12 Comparisons...40
Key Points ... 40
Project.. 41

13 Conditionals ..42
Key Points ... 42
Project.. 45
Project 2... 46

JavaScript for Beginners 3

14 Looping..48
Key Points ... 48
Project.. 50

15 Arrays ..53
Key points .. 53
Project.. 55

16 Associative & Objective Arrays ...57
Key Points ... 57
Project.. 58

17 Two Dimensional Arrays ..59
Key Points ... 59
Project.. 60

18 String Manipulation...61
Key Points ... 61
Project.. 65

19 Using Functions..66
Key Points ... 66
Project.. 69

20 Logical Operators ...71
Key Points ... 71
Project.. 74

21 Using Event Handlers ..75
Key Points ... 75
Project.. 77

22 Working with Images ..79
Key Points ... 79
Project.. 80

23 Simple Image Rollovers ...81
Key Points ... 81
Project.. 83

24 Object Instantiation and Better Rollovers ...85
Key Points ... 85
Project.. 86

25 Working with Browser Windows ..88
Key Points ... 88
Project.. 90

26 Positioning Browser Windows ...91
Key Points ... 91
Project.. 92

JavaScript for Beginners 4

27 Focus and Blur..93
Key Points ... 93
Project.. 94

28 Dynamically Created Content ..95
Key Points ... 95
Project.. 95

29 Working with Multiple Windows...97
Key Points ... 97
Project.. 98

30 Using an External Script File ...99
Key Points ... 99
Project.. 100

31 Javascript and Forms...101
Key Points ... 101
Project.. 103

32 Form Methods and Event Handlers ..105
Key Points ... 105
Project.. 106

33 JavaScript and Maths...108
Key Points ... 108
Project.. 109

34 Object Variables – A Refresher...111
Key Points ... 111
Project.. 112

35 Actions From Menu Items ..113
Key Points ... 113
Project.. 114

36 Requiring Form Values or Selections..116
Key Points ... 116
Project.. 118

37 Working with Dates ..121
Key Points ... 121
Project.. 122

38 Retrieving Information from Date Objects...123
Key Points ... 123
Project.. 124

39 Creating a JavaScript Clock ..126
Key Points ... 126
Project.. 128

JavaScript for Beginners 5

1 What is a Programming Language?

Key Points
o A programming language is a set of codes that we can use to

give a computer instructions to follow.

o Popular and well-known programming languages include Java,
C++, COBOL, BASIC, LISP and more. Most popular
programming languages consist of words and phrases that are
similar in form to the English language.

o A well-written program will be easily readable by anyone with
a little programming experience, regardless of whether they
have any direct experience of the language in question. This is
because modern programming languages share a large number
of common concepts. In particular, they all have a notion of
variables, arrays, loops, conditionals, and functions. We will
meet these concepts again in more depth later in the course.

o Traditionally, programming languages have been used to write
(for the most part) “stand-alone” applications. Things like
Microsoft Word, Mozilla Firefox and Lotus Notes are all
examples of such applications. Once installed on a PC, these
applications run without necessarily requiring any other
software to be installed alongside them.

o Web Applications differ from these traditional applications in
many respects, but the most striking is that they all run inside
your web browser. Examples of popular web applications are
things like Google, Hotmail, Flickr, GMail and any of the vast
array of “weblogging” systems.

JavaScript for Beginners 6

o These applications are also written using programming
languages, but as a rule they are built using multiple,
interdependent technologies. These technologies are easily
(though not completely) broken down into two categories:
server-side and client-side.

JavaScript for Beginners 7

2 Server-side vs. Client-side

Key Points
o The World Wide Web is built on a number of different

technologies.

o For most users, the web starts and ends with their choice of
web browser. The browser is said to define the client-side of
the web, with the browser, the computer it is running on, and
the user surfing the web being collectively referred to as the
client.

o Consider a client who has decided to visit the web site at
www.google.com. The first thing that happens is that the client
will make a request to Google’s web server for the default
page of that web site.

o The web server is an application running on a computer
owned by Google. Like the client, the server application and
the computer on which it runs define the server-side of the
web, and are collectively referred to as the server.

o When the server receives the request from the client for a
particular page, its job is to retrieve the page from the
computer’s files and serve it back to the client. In many cases,
this operation is a very simple procedure involving little or no
work on the part of the server.

o However, using a programming language like PHP, Perl or
Java, we can cause the server to either modify the page it finds
before it passes it back to the client, or even to generate the
page entirely from scratch. This is referred to as a server-side
application. The page passed back to the client looks (to the
client) exactly the same as any other page that has not been
modified.

JavaScript for Beginners 8

o An example of a server-side application might be to insert the
current date and time into a page. This would mean that each
time the page was requested (say, by using the browser’s
refresh button), a new time value would be added to the page.

o Once the client has received the page from the server, it
displays the page and waits for the user to request another
page. As soon as the page reaches this state, it has moved
beyond the control of the server. No server-side application
can now alter the contents of the page without the client having
to make another trip back to the server to get a new (and
possibly updated) copy of the page.

o However, all modern browsers allow for the running of client-
side applications. These are small applications which are
embedded within the HTML code of the page itself.

o Server-side applications ignore any client-side applications
that they find while modifying pages to send to the client, so in
general the two types of application cannot easily “talk” to
each other.

o However, once the client has received a client-side
application, it can begin to modify the page dynamically,
without the need to go back to the server.

o An example of a client-side application might be a clock on a
web page that updated every second.

o An unfortunate side effect of client-side applications is that all
the code must be sent to the client for running, which means
that the application’s inner workings are available for anyone
to see. This makes it impractical for checking passwords, or
doing anything else that could cause confidential information
to be released into the wild.

o In addition, all modern web browsers afford the user the
opportunity to switch off client-side applications altogether.
On top of this, the way the same client-side application is run
will vary from browser type to browser type.

o Despite these drawbacks, client-side applications (or scripts,
as they are better known due to their general brevity) remain
the best way to provide web users with a rich environment
when developing web applications.

JavaScript for Beginners 9

o In short, the two technologies each have their strengths and
weaknesses:

o Client-side scripts allow the developer to alter pages
dynamically, and to respond to user actions immediately rather
than having to wait for the server to create a new version of the
page. However, there are security and cross-browser
compatibility issues to be aware of, and these are often non-
trivial.

o Server-side applications allow the developer to keep her code
secure and secret, thus allowing for more powerful
applications to be created. In addition, since the server running
the code is always a known quantity, applications that run
successfully in one browser will run successfully in all
browsers. However, despite all this power, there is no direct
way for a server-side application to alter a page without
having to force the client-side to load another page. This
makes it completely impractical for things like drop-down
menus, pre-submission form checking, timers, warning alerts
and so forth.

JavaScript for Beginners 10

3 About JavaScript

Key Points
o JavaScript is an interpreted, client-side, event-based, object-

oriented scripting language that you can use to add dynamic
interactivity to your web pages.

o JavaScript scripts are written in plain text, like HTML, XML,
Java, PHP and just about any other modern computer code. In
this code, we will use Windows NotePad to create and edit
our JavaScript code, but there are a large number of
alternatives available. NotePad is chosen to demonstrate
JavaScript’s immediacy and simplicity.

o You can use JavaScript to achieve any of the following:

 Create special effects with images that give the
impression that a button is either highlighted or
depressed whenever the mouse pointer is hovered over it.

 Validate information that users enter into your web
forms

 Open pages in new windows, and customise the
appearance of those new windows.

 Detect the capabilities of the user’s browser and alter
your page’s content appropriately.

 Create custom pages “on the fly” without the need for a
server-side language like PHP.

 And much more…

JavaScript for Beginners 11

o JavaScript is not Java, though if you come from a Java
background, you will notice that both languages look similar
when written. Java is a full featured and comprehensive
programming language similar to C or C++, and although
JavaScript can interact with Java web applications, the two
should not be confused.

o Different web browsers will run your JavaScript in different,
sometimes incompatible ways. In order to work around this, it
is often necessary to use JavaScript itself to detect the
capabilities of the browser in which it finds itself, and alter its
operation depending on the result.

o To revisit the original definition in this chapter, note the
following points:

 Interpreted refers to the fact that JavaScript code is
executed (acted on) as it is loaded into the browser. This
is a change of pace from compiled languages like Java,
which check your program thoroughly before running a
single line of code, and can have many implications that
can catch you out if you are from a non-interpreted
programming background.

 Client-side has been defined already in the previous
chapter.

 Event-based refers to JavaScript’s ability to run certain
bits of code only when a specified event occurs. An
event could be the page being loaded, a form being
submitted, a link being clicked, or an image being
pointed at by a mouse pointer.

 Object-oriented signals that JavaScript’s power to
exert control over an HTML page is based on
manipulating objects within that page. If you are familiar
with object-oriented programming, you will be aware
of some of the power that this can bring to the coding
environment.

JavaScript for Beginners 12

o One final note: While JavaScript is a programming language,
HTML (the language of the World Wide Web) is not. HTML
is a Markup Language, which means that it can be used to
mark areas of a document as having special characteristics like
headers, paragraphs, images, forms and so on, but it cannot
perform any logical processing on its own. So while
JavaScript is often written alongside HTML, the rules of one
do not necessarily have any bearing on the other.

JavaScript for Beginners 13

4 A Tour of JavaScript

Key Points
o Let’s start with a quick tour of the major features of

JavaScript. This chapter is intended to be a showcase of what
JavaScript can do, not an in depth investigation into the
deeper concepts, so don’t worry too much if you get lost or
don’t understand the code you’re typing in!

Project
o Our JavaScript is all going to be written using NotePad.

Open NotePad and save the resulting empty document in your
user drive as chapter_4.html.

o Begin by creating a basic HTML page in your blank document.
It doesn’t have to be anything fancy – the following will be
more than sufficient:

<html>
<head>
 <title>Chapter 4: A Tour of ↵
 JavaScript</title>
</head>

<body>

<h1>A Tour of JavaScript</h1>

</body>
</html>

o As a convention, when the notes intend that you should enter
code all on one line, they will use an arrow as above ↵ to
indicate that you should not take a new line at that point. With
HTML, this is rarely important, but with JavaScript, a new
line in the wrong place can stop your code from working.

JavaScript for Beginners 14

o Save your new webpage, and view it in your web browser. For
the moment, use Internet Explorer to view this page. To do
this, find your saved file on your user drive, and double-click
on it. This will open the file in Internet Explorer by default,
and let you see the header you’ve just created.

o So far, we haven’t done anything beyond the scope of HTML.
Let’s add some JavaScript to the page.

o There are (generally speaking) three places in a web page
where we can add JavaScript. The first of these is between a
new set of HTML tags. These script tags take the following
form:

<script language=”JavaScript” ↵
 type=”text/JavaScript”>

… code …

</script>

o The script element above can be placed virtually anywhere
you could place any element in an HTML page – in other
words, in either the head element or the body element. It is
most commonly placed in the former, though this is usually so
that all your code can be easily found on the page.

o Note too that there is no arbitrary limit on the number of
script elements that can be contained in an HTML page.
There is nothing stopping you from having a hundred of these
dotted around your pages, except perhaps prudence.

o Let’s add our opening and closing script tags to the head
element of the page, like so:

<html>
<head>
 <title> … </title>
 <script language=”JavaScript” ↵
 type=”text/JavaScript”>

 </script>
</head>

…

JavaScript for Beginners 15

o Save the file, and then try refreshing your page in the browser
window. Note that nothing has happened. This is what we
expected – all we have done so far is to set up an area of the
page to hold our JavaScript.

o Go back to NotePad and enter the following text between the
opening and closing script tags:

 window.alert(“Hello world!”);

o Save your changes, and again refresh your page in the browser
window. Welcome to the world of JavaScript!

o Go back to notepad and remove the window.alert line you
just added. Now add the following, slightly more complex
code:

if (confirm(“Go to Google?”)) {
 document.location = ↵
“http://www.google.com/”;
}

o Again, save your changes and refresh the page. For those with
an eye to future chapters, this is an example of a conditional
statement, where we ask JavaScript to check the condition of
something (in this case, our response to a question) and then to
alter its behaviour based on what it finds.

o Now, both of these bits of JavaScript have run uncontrollably
when the page has loaded into the browser. In most cases, we
will want to have more control over when our JavaScript does
what we ask it to.

o This control is the domain of events. In a browser, every
element of an HTML document has associated with it a
number of events that can happen to it. Links can be clicked,
forms can be submitted, pages can be loaded and so on.

o Modify the previous lines of JavaScript in your script
element to match the following:

function go_to_google() {
 if (confirm(“Go to Google?”)) {
 document.location = ↵
“http://www.google.com/”;
 }
}

JavaScript for Beginners 16

o Be careful with your brackets here!

o Save and refresh, and note that nothing happens this time. This
is because we have enclosed the previous action (popping up a
question and acting on the response) within a function. A
function is a block of code that is given a name – in this case,
the name is go_to_google() – and is only run when that
name is “called”. It can be useful to think of functions as
magic spells that can be invoked when their name is said.

o To invoke this spell, we need to choose an element on the page
to trigger it. A natural candidate is a link element, so add the
following HTML to the body section of your page:

<p>A quick test.</p>

o The # link is a common HTML trick that allows us to create a
“link to nowhere”.

o Save and refresh, and check that the link appears on the page,
and that it goes nowhere when clicked.

o Now, we want to have our page ask us if we want to “Go to
Google?” when we click on that link. Here’s how

o Take the link element, and modify it as follows:

test

o Save and refresh, and then click on the link. This is an example
of an event handler. When the link is clicked (onclick), our
browser says the “magic words” go_to_google(), and our
function is invoked.

o For our final trick, add the following code to the body section
of the page, after the paragraph containing the link:

<body>
…
<script language=”JavaScript” ↵
 type=”text/JavaScript”>

document.write(“<h2>Here’s another ↵
 header!</h2>”);

</script>

o Note that the line of code should be all on one line!

JavaScript for Beginners 17

o Save the page and refresh the browser. Note that we now have
a new line of text on the page – another header! We’ve used
JavaScript to create HTML and tell the browser to display it
appropriately. In this example, JavaScript has done nothing
that we couldn’t have done with a line of HTML, but in future
chapters we will see how we can use this to write the current
date and more.

JavaScript for Beginners 18

5 Objects, Properties and Methods

Key Points
o Generally speaking, objects are “things”. For example, a piano

is an object.

o Properties are terms that can describe and define a particular
object. Our piano, for example, has a colour, a weight, a
height, pedals, a keyboard and a lid.

o Note from the above that an object’s properties can be
properties themselves. So we have the case where a piano lid is
a property of the piano, but is also an object in its own right,
with its own set of properties – for example, the lid has a
colour, a length, and even a state of either open or closed.

o If objects are the nouns of a programming language and
properties are the adjectives, then methods are the verbs.
Methods are actions that can be performed on (or by) a
particular object. To continue our piano example, you could
play a piano, open its lid, or press the sustain pedal.

o Many programming languages have similar ways of referring
to objects and their properties or methods. In general, they are
hierarchical, and an object’s relationship with its properties
and methods, as well as with other objects, can often be easily
seen from the programming notation.

o In JavaScript, we use a “dot notation” to represent objects and
their properties and methods. For example, we would refer to
our piano’s colour in the following way:

piano.colour;

JavaScript for Beginners 19

o If we wanted to instruct JavaScript to play the piano, we could
write something as simple as:

piano.play();

o A clear example of object hierarchy could be seen if we
decided to open the lid of the piano:

piano.lid.open();

o Or even more so if we wanted to press the sustain pedal of the
piano:

piano.pedals.sustain.press();

o Note that in some of the examples above, we have brackets ()
after each set of words, and in some we don’t. This has to do
with making sure that JavaScript can understand what we say.

o JavaScript works with objects throughout its existence in a
web browser. All HTML elements on a page can be described
as objects, properties or methods. We have already seen a few
of these objects in our previous introductory chapter:

document.write(…);
document.location;

o In these examples, document is an object, while write is a
method and location is a property.

o In these lines, we see a clue about the use of brackets in these
statements. We use brackets to signify to JavaScript that we
are talking about an object’s method, and not a property of the
same name.

o Brackets also allow us to pass certain extra information to an
object’s method. In the above example, to write the text “Hello
world!” to a web page document, we would write the
following JavaScript:

document.write(“Hello World”);

o Each method can do different things depending on what is put
in the brackets (or “passed to the method as an argument”, to
use the technical term). Indeed, many methods can take
multiple “arguments” to modify its behaviour. Multiple
arguments are separated by a comma (,).

JavaScript for Beginners 20

o A JavaScript instruction like those shown here is referred to as
a JavaScript statement. All statements should end in a single
semi-colon (;). JavaScript will often ignore missed semi-colons
at the end of lines, and insert the semi-colon for you. However,
this can cause some unexpected results. Consider the
following:

document.write(“<h1>
 Hello World!
 </h1>”);

o In many other languages, this would be acceptable. However,
JavaScript will often interpret something like this as the
following:

document.write(“<h1>;
Hello World!;
</h1>”);

o This interpretation will generate an error, as JavaScript will
complain if you end a statement without ensuring that any
terms between quotes have matching pairs of quotes. In this
example, the first line’s “statement” is cut short, and
JavaScript will fall over.

o For this reason, it is recommended that all your statements
should end with semi-colons.

JavaScript for Beginners 21

6 Assigning Values to Properties

Key Points
o While objects and methods allow us to do things on a page,

such as alter the content or pop up dialogue boxes to interact
with the user, in many cases we will want to alter the value of
one of an object’s properties directly. These cases are akin to
painting our piano green.

o Given our discussion on methods so far, we might expect to be
able to alter our object’s properties by using a method – for
example, the following would seem logical:

piano.paint(“green”);

o In many cases, that is exactly what we will do. However, there
are two drawbacks here. The first is that, within this course, the
majority of objects that we discover are built into and defined
by our browser. If we rely on using a method to alter an
object’s property, we are also relying on the fact that the
method exists in the first place.

o A much more direct way to solve this problem is to access the
object’s properties directly. For example:

piano.colour = “green”;

o Here we are no longer using a method to perform an action, we
are using what is known as an operator. In this case, the
operator has the symbol “=”, and is known as the assignment
operator.

JavaScript for Beginners 22

o Within JavaScript, we can use this operator to great
effectiveness. For example, we could alter the title element of a
document (the text that is displayed in the top bar of the
browser’s window) dynamically. This could be done when a
user clicked on a part of the page using an event handler (more
later on this), or could be set to automatically update each
minute to show the current time in the page title. The code we
would use for this task is simple:

document.title = “a new title”;

o There are many assignment operators in JavaScript. Some of
the more common are shown in the table below:

Assignment Function

x = y Sets the value of x to y

x += y Sets the value of x to x+y

x -= y Sets the value of x to x-y

x *=y Sets the value of x to x times y

x /=y Sets the value of x to x divided by y

o Not all assignment operators work with all types of values. But
the addition assignment operator works with both numbers and
text. When dealing with numbers, the result will be the sum of
the two numbers. When dealing with text (technically called
strings), the result will be the concatenation of the two
strings:

document.title += “!”;

will cause the symbol “!” to be appended to the end of the
current document title.

Project
o Open your previous project file, and save it under the name

chapter_6.html.

o Remove any existing JavaScript from your script tags, but
leave the tags in place ready for some new JavaScript.

JavaScript for Beginners 23

o Use your text editor to change the value of the title element of
the page as follows, then load your page into a browser and
view the result:

<title>With a little help from</title>

o Now, add a statement to our script element to add the
following text to the end of the current title:

”JavaScript for Beginners!”;

o Reload the page in your browser and note the title bar of the
window.

o If the display looks odd, consider your use of spaces…

o All we have so far is an example that does nothing more than
HTML could manage. Let’s introduce a new method of the
window object to help us to add a little more dynamism and
interaction to the script. Change the value of the title tag as
follows:

<title>Chapter 6: Assigning Values to
Properties</title>

o Now, remove your previous JavaScript statement and insert the
following:

document.title = ↵
 window.prompt(“Your title?”, “”);

o Reload your page and consider the result.

o We have come across the window object before. Our
demonstration of the alert method in chapter 4 could have
been more properly written as:

window.alert(“message”);

In many cases, we can omit certain parts of our
object/property/method hierarchy when writing our code. We
will discuss this again later.

JavaScript for Beginners 24

o To understand what is going on with our prompt method, we
can write down a method prototype. This is a way of
describing a method’s arguments in such a way that their effect
on the method is more self explanatory. A prototype for the
prompt method of the window object might look like the
following:

window.prompt(message, default_response);

o So, we can see that the first argument defines the text that
appears as the question in the prompt dialogue box. The
second argument is a little less clear. Try your code with
different values and see what difference your changes make.

o Finally, we note that this prompt method somehow takes the
information typed into the box and passes it to our JavaScript
assignment. Say someone typed “Hello World” into the box. It
would have been as if our assignment had actually been:

document.title = “Hello World”;

o When this sort of passing of values occurs, it is said that the
method has returned the value passed. In this case, we would
say that “the prompt method has returned the value ‘Hello
World’”, or that “the return value of the prompt method was
‘Hello World’”.

o Return values will become very important when we deal with
event handlers later on.

JavaScript for Beginners 25

7 About Comments

Key Points
o Repeat after me : Comments are important. Comments are

important. Comments are important.

o Adding comments to your code is always good practice. As the
complexity of your scripts grows, comments help you (and
others) understand their structure when you come to view the
code at a later date.

o A lot of code created quickly is said to be “write only” code, as
it suffers from an inherent lack of structure or commenting.
Debugging such code, or reusing it months later, becomes
maddeningly impossible as you try to remember what a certain
line was supposed to do, or why using certain values seems to
stop your code from working.

o Comments are completely ignored by JavaScript and have no
effect on the speed at which your scripts run, provided they are
properly formed.

o Comments can slow the loading of your page, however – many
coders keep a “development” copy of their code fully
commented for editing, and remove all comments from their
code when they finally publish it.

o There are two types of comment in JavaScript – single line
comments, and multi-line comments.

o Single line comments begin with two forward-slash characters
(//), and end with a new line:

// this is a comment

alert(“hello”); // so is this

JavaScript for Beginners 26

o Single line comments in JavaScript can also use the HTML
comment format that you may be familiar with:

<!-- this is a comment

alert(“hello”);

o Note two things: firstly, this use of the HTML comment format
does not require a closing --> tag. Secondly, this is only a one
line comment, unlike its use in HTML, which comments all
lines until the closing comment tag.

o You can add multiple-line comments by enclosing the
comment block between /* and */. For example:

/* all of this text is going to be
ignored by JavaScript. This allows us to
write larger comments without worrying about
having to individually “comment out” each
line */

alert(“Hello World”);

/* a one line, “mult-line” comment */

o As well as adding narrative to your script, you can use
comments to remove code from your pages without having to
delete the code. For example:

// this was the old message
// alert(“Hello World”);
// and this is the new message
alert(“Hello everyone!”);

o This can be very useful if you are trying to track down an error
in your code – you can “comment out” each suspect line in
turn until you manage to get your code working again.

Project
o Open your previous project file, and save it under the name

chapter_7.html.

o Add the single line comment

This is my first comment

to the beginning of your script.

JavaScript for Beginners 27

o Add a multi-line comment to your script, replacing your
previous single line comment. The multi-line comment should
describe what your script does at present.

JavaScript for Beginners 28

8 Hiding Scripts from Older Browsers

Key Points
o Very old browsers don’t understand JavaScript. There are very

few such browsers in use today, but two factors force us to
continue to consider environments that may not be able to cope
with our JavaScript code.

o Firstly, all modern browsers allow users to control whether
JavaScript code will be run. In many cases, users will not have
any say over their company policy, and may not even know
that their work machine has had JavaScript disabled.

o Secondly, not all of your visitors will be using browsers that
can make any use of JavaScript. Braille displays, screen
readers and other non-visual browsers have little use for many
JavaScript tricks. In addition, search engines like Google will
ignore any JavaScript you use on your pages, potentially
hiding important content and causing your pages to remain un-
indexed.

o Browsers that don’t support JavaScript are supposed to ignore
anything between the opening and closing script tags.
However, many break this rule and will attempt to render your
code as HTML, with potentially embarrassing consequences.

JavaScript for Beginners 29

o However, we can use the fact that <!-- denotes a single line
comment in JavaScript but a multi-line comment in HTML to
ensure that our code is seen by a JavaScript-savvy browser, but
ignored as commented-out HTML by anything else:

<script>
<!-- hide from older browsers

… your code

// stop hiding code -->
</script>

o This prevents older browsers from displaying the code, but
what if we want to replace this with some comment. For
example, let’s say we had a bit of code that displayed the time
of day and greeted our user by name. Without JavaScript and
using the method above, there would simply be a blank on the
page where the greeting should have been.

o We can use the <noscript> tag to cause our code to “fail
gracefully” where JavaScript has been disabled or is
unavailable. The contents of this element will be ignored
where JavaScript is understood, and displayed anywhere else.
For example:

<noscript>
 <h1>Welcome to our site!</h1>
</noscript>

<script>
<!-- hide from older browsers

… code to customise header

// stop hiding code -->
</script>

Project
o Open your previous project file, and save it under the name

chapter_8.html.

o Add two lines to your code to ensure that it will not confuse
older browsers or browsers where the user has disabled
JavaScript.

JavaScript for Beginners 30

o Add a noscript element to explain what your JavaScript does.
It is generally considered “bad form” to instruct your user to
“upgrade to a better browser”, as this can insult many people
who use assistive devices – consider this form of advice to be
similar to the advice that tells a blind person “to get some
glasses”.

o Instead where possible you should use the noscript element to
provide content that adequately replaces the scripted content
with a suitable replacement. For example, if you use your
JavaScript to build a navigation panel on your page, the
noscript element should contain a plain HTML list that does
the same job.

JavaScript for Beginners 31

9 Automatically Redirecting the User

Key Points
o We have already briefly seen the use of browser redirection in

chapter 4.

o To formulate the idea more completely, in order to redirect the
user to a different page, you set the location property of the
document objects.

o As we saw in chapter 6, we can use the assignment operator
here. For example:

document.location = “http://www.bbc.co.uk/”;
document.location = “chapter_4.html”;

Project
o Open your previous project file, and save it under the name

chapter_9_redirect.html.

o Save another copy of the file, this time called
chapter_9.html.

o Make sure both files are saved in the same folder, and that you
have chapter_9.html open in your editor.

o Remove all script from between the script tags, except for your
browser hiding lines. Make sure that the script tags are still in
the head section of the page.

o Now, add a single statement to this script that will
automatically redirect the user to the page
chapter_9_redirect.html as soon as the page is loaded
into a browser.

JavaScript for Beginners 32

o Finally, add a header tag to the body section of the page
containing the text “You can’t see me!”.

o Close this page, don’t check it in a browser yet, and open the
page chapter_9_redirect.html in your editor.

o Remove all JavaScript from this page (including your script
tags) and ensure that only HTML remains on the page.

o Add a header tag to the body section of the page containing the
text “But you can see ME!”.

o Save this page, and load the page chapter_9.html into your
browser.

o Experiment with various positions for the script tags on
chapter_9.html to see if you can make the header appear
before the redirection.

JavaScript for Beginners 33

10 Alert, Prompt and Confirm

Key Points
o So far, we have seen brief examples of alert, prompt and

confirm dialogue boxes to request a response from the user,
and to pause all code in the background until the request is
satisfied.

o All of these boxes are the result of methods of the window
object. This object is the highest level object that JavaScript
can deal with in a browser. As such, all other objects on a page
(with a few exceptions) are actually properties of the window
object.

o Because of this ubiquity, its presence is assumed even if it is
omitted. Thus, where we technically should write:

window.document.write(“…”);

it is equally valid to write:

document.write(“…”);

as we have been doing.

o Similarly, instead of writing:

window.alert(“…”);

we can happily write:

alert(“…”);

JavaScript for Beginners 34

o The prototypes of the three methods are:

window.alert(message);
window.confirm(message);
window.prompt(message, default_response);

o Alert will always return a value of “true” when it is cleared by
clicking “ok”.

o Confirm will return either “true” or “false” depending on the
response chosen to clear the box.

o Prompt will return either the value typed in, “null” if nothing is
typed in, and “false” if the box is cancelled.

Project
o Open your previous project file, and save it under the name

chapter_10.html.

o Clear the previous redirection code, and ensure that the script
tags have been returned to the head section of the document.

o Add a new statement to the script on the page that will display
the following message before the rest of the page is shown:

Welcome to my website! Click OK to continue.

o Check your page in your browser.

o We will use alert, confirm, and prompt throughout this
course. Take a moment to try each of them in turn on this page,
each time stopping to review your changes.

o Use the write method of the document object to check the
return values of each method. For example:

document.write(alert(“hello world”));

Make sure that you place this particular snippet of code in
script tags within the body area of the page, as we are
generating text output to be rendered by the browser. Also,
note the use (or not) of quotes here. More next chapter!

JavaScript for Beginners 35

11 Variables and Operators

Key Points
o We have been introduced to the concepts of objects and their

various properties and methods. These inter-related concepts
allow any web page to be broken down into little snippets of
information or data, which can then be accessed by JavaScript
and, in many cases, changed.

o However, what if we want to create our own storage space for
information that doesn’t necessarily have a page-based
counterpart? For example, what if we wanted to store the
previous value of a document’s title property before changing
it, so it could be retrieved later, or if we wished to store the
date time that the page was loaded into the browser for
reproduction in several places on the page, and didn’t want to
have to recalculate the time on each occasion?

o Variables are named containers for values within JavaScript.
They are similar to object properties in many ways, but differ
importantly:

o In a practical sense, variables have no “parent” object with
which they are associated.

o Variables can be created (“declared”) by you as a developer,
and can be given any arbitrary name (within certain rules) –
object properties, however, are restricted by the definition of
the parent object. It would make no sense, for example, for our
piano object in the previous chapters to have a propeller
property!

JavaScript for Beginners 36

o Variable name rules are straightforward – no spaces, names
must start with a letter. Examples of valid variable names are:

BrowserName
page_name
Message1
MESSAGE1

o In many browsers, JavaScript is case-sensitive, which means
that the last two variables in the example above are distinct
variables. It is a good idea to pick a particular naming style for
your variables, and to stick to it within your projects.

o At the simplest level, variables can store three different types
of value:

o Numbers
e.g. 1.3324, 3.14159, 100000, -8 etc.

o Strings
e.g. “JavaScript for Beginners, week 3”, “Hello World” etc.

o Boolean Values
e.g. true, false

o Note that strings can contain numbers, but the following
variable values are not equivalent:

1.234 and “1.234”

The latter is a string value. This becomes important. Consider:

1+2 = 3
“a” + “b” = “ab”
“1” + “2” = “12”

o Some developers use their own naming convention with
variable names to denote the type of value expected to be
contained in a given variable. This can often be helpful, but is
in no way required by JavaScript (c.f. JavaScript comments)

o For example, strMessage might indicate a string variable,
where numPageHits might indicate a numerical value in the
variable.

JavaScript for Beginners 37

o Variable assignment is accomplished in the same way as
object property assignment. When a variable is assigned a
value for the first time, it is automatically created. This is
different from other programming languages, where a variable
must be created explicitly first, before it can be loaded with a
value.

o Some examples of variable assignment follow:

numBrowserVersion = 5.5;

numTotal += 33;

Message = “Hello!”;
Message = “Goodbye”;
Message = 3;

o Note that the last three examples show that variable values can
be altered after their initial assignment, and also that the type
of value stored in a variable can be altered in a similar
manner.

o Once a variable has been created and a value stored within, we
will want to be able to access it and perhaps manipulate it. In a
similar manner to object properties, we access our variables
simply by calling them:

Message = “Hello World!”;
alert(Message);

o Note that we do not use quote marks around our variable
names. The above code is different from:

alert(“Message”);

for hopefully obvious reasons.

o As well as using variables for storage and access, we can
combine and manipulate them using operators. For example:

a = 12;
b = 13;
c = a + b; // c is now 25
c += a; // c is now 37
c = b + “ Hello!”; // c is now “13 Hello!”

JavaScript for Beginners 38

o Our last example may have been unexpected – we added a
number to a string and got a string as a result. JavaScript is
smart enough to realise that a number cannot be “added” to a
string in a numerical sense, so it converts the number
temporarily to a string and performs a concatenation of the
two strings. Note that b remains 13, not “13”.

o A table of operators:

Operator Function

x + y Adds x to y if both are numerical –
otherwise performs concatenation

x – y Subtracts x from y if both are numerical

x * y Multiplies x and y

x / y Divides x by y

x % y Divides x by y, and returns the remainder

-x Reverses the sign of x

x++ Adds 1 to x AFTER any associated
assignment

++x Adds 1 to x BEFORE any associated
assignment

x-- Subtracts 1 from x AFTER any associated
assignment

--x Subtracts 1 from x BEFORE any associated
assignment

Project
o Open your previous project file, and save it under the name

chapter_11.html.

o Clear the previous JavaScript code, and ensure that the script
tags are contained in the body section of the document.

o Assign the message

“Welcome to my web site”

to a variable called greeting.

JavaScript for Beginners 39

o Use this variable to create an alert box containing the message,
and also to produce a header on the page without having to
retype the message.

o Test this page in your browser.

o Now, modify your code to create two variables, var_1 and
var_2.

o Assign the value “Welcome to” to var_1, and the value “my
web site” to var_2.

o Create a third variable var_3, and assign to it the value of
var_1 + var_2. Then use an alert box to check the resultant
value of var_3.

o Test this page in your browser.

o If the text in the alert box does not appear as expected,
consider the use of spaces in the variable assignments, and
correct the error.

o Now, modify your code to produce the same result but without
requiring a third variable.

o Clear all statements from the current script tags.

o Add two statements to the script which assign the numbers
100 to one variable and 5.5 to another.

o Use document.write to show the effects of each of the
operators given in the table on page 34 on the two numerical
values.

o Substitute one of the numerical values for a text string and
repeat the procedure. Note the differences.

JavaScript for Beginners 40

12 Comparisons

Key Points
o Comparison operators compare two values with each other.

Most commonly, they are used to compare the contents of two
variables – for example we might want to check if the value of
var_1 was numerically greater than that of var_2.

o When you use a comparison operator, the value that is
returned from the comparison is invariably a Boolean value
of either true or false. For example, consider the following
statements:

var_1 = 4;
var_2 = 10;

var_3 = var_1 > var_2;

In this case, the value of var_3 is false. Note that the Boolean
value of false is not the same as the text string “false”:

var_4 = false; // Boolean value
var_5 = “false”; // Text string

o Common comparison operators are given below:

Comparison Function

X == y Returns true if x and y are equivalent, false
otherwise

X != y Returns true if x and y are not equivalent,
false otherwise

X > y Returns true if x is numerically greater than
y, false otherwise

JavaScript for Beginners 41

X >= y Returns true if x is numerically greater than
or equal to y, false otherwise

X < y Returns true if y is numerically greater than
x, false otherwise

X <= y Returns true if y is numerically greater than
or equal to x, false otherwise

o To reverse the value returned from a comparison, we generally
modify the comparison operator with a ! (a “bang”). Note that
in many cases this is not necessary, but can aid
comprehension:

var_1 !> var_2;
var_1 <= var_2;

both of these are equivalent, but one may make more semantic
sense in a given context than the other.

Project
o Open your previous project file, and save it under the name

chapter_12.html.

o Ensure that your two variables both have numerical values in
them and not strings.

o Use an alert box to display the result of a comparison of your
two variables for each of the comparison operators listed
above.

o Substitute one of the numerical values for a text string and
repeat the procedure. Note the differences.

JavaScript for Beginners 42

13 Conditionals

Key Points
o Up until now, our JavaScript projects have been unable to alter

their behaviour spontaneously. When a page loads with our
JavaScript embedded within, it is unable to do anything other
than what we expect, time and again.

o The only difference we have seen is in the use of a prompt box
to alter what is shown on a page. However, the page essentially
does the same thing with the text provided, regardless of what
text is typed in.

o What would be really handy would be to give JavaScript a
mechanism to make decisions. For example, if we provided a
prompt box asking the visitor for their name, it might be nice
to have a list of “known names” that could be greeted
differently from any other visitors to the site.

o Conditional statements give us that ability, and are key to
working with JavaScript.

o A conditional statement consists of three parts:

o A test (often with a comparison operator, or comparator) to
see if a given condition is true or false.

o A block of code that is performed if and only if the condition is
true.

o An optional block of code that is performed if and only if the
condition is false.

JavaScript for Beginners 43

o These three parts are represented in JavaScript as follows:

if (conditional_test)
 {
 JavaScript statement;
 JavaScript statement;
 JavaScript statement;
 …
 }
else
 {
 JavaScript statement;
 JavaScript statement;
 JavaScript statement;
 …
 }

o Everything from the first closing curly bracket (or brace) is
optional, so the following is also a valid conditional prototype:

if (conditional_test)
 {
 JavaScript statement;
 JavaScript statement;
 JavaScript statement;
 …
 }

o In this case, if the conditional_test does not return true,
nothing happens.

o An example of complete conditional statement is as follows:

if (var_1 > var_2)
 {
 alert(“Variable 1 is greater”);
 }
else
 {
 alert(“Variable 2 is greater”);
 }

JavaScript for Beginners 44

o Note that the above condition is not necessarily always correct.
Consider the case where var_1 is equal to var_2. In that
case, the above code will produce the message that “Variable 2
is greater”, since var_1 > var_2 returns false. In this case,
we want to add an additional condition to the else branch of
code:

if (var_1 > var_2)
 {
 alert(“Variable 1 is greater”);
 }
else
if (var_1 < var_2)
 {
 alert(“Variable 2 is greater”);
 }

o In this case, equality will produce no output, as neither of the
conditions will return true. For completeness, we could add a
final else branch to the statement:

if (var_1 > var_2)
 {
 alert(“Variable 1 is greater”);
 }
else
if (var_1 < var_2)
 {
 alert(“Variable 2 is greater”);
 }
else
 {
 alert(“The variables are equal”);
 }

o Note that in this case, we don’t have to check for equality in
the final branch, as if var_1 is neither greater than nor less
than var_2, then – numerically at least – the two must be
equal.

o We can continue adding as many else if statements as required
to this stack.

JavaScript for Beginners 45

o If you only have one statement following your conditional test,
the braces may be omitted:

if (var_1 > var_2)
 alert(“Variable 2 is greater”);

However, if you later want to add further statements to this
conditional branch, you will have to add braces around the
block, and this can lead to confusion. It is recommended that
you use braces to enclose all blocks of conditional code.

o Consider the following block of code:

if (var_1 > 4)
 {
 var_2 = var_1;
 }
else
 {
 var_2 = 4;
 }

o This code is rather long, but achieves comparatively little –
var_2 is equal to var_1 or 4, whichever is greater.

o A more compact way of writing this could be:

var_2 = 4;
if (var_1 > var_2)
 {
 var_2 = var_1;
 }

o However, an even more compact way of writing this could be
to use the ternary operator:

var_2 = (var_1 > 4) ? var_1 : 4;

o In the above statement, the conditional is evaluated and, if true,
the value returned is the value between ? and : symbols, or if
false, it is the value between the : and ; symbols.

Project
o Open your previous project file, and save it under the name

chapter_13.html.

o Clear all JavaScript code from your script tags.

o Create two variables and assign numerical values to them.

JavaScript for Beginners 46

o Use a conditional statement to show alert boxes declaring
which variable is the greater of the two.

o Consider the following code:

var_3 = (var_1 > var_2);

o Use this code in your script to simplify your conditional
checking code.

o Now, use a prompt box to ask your visitor their name. Assign
this name to var_3.

o Check to see if the name typed in is your own name. If it is,
use document.write to display a personalised greeting on
the page. Otherwise, display a generic greeting.

o Use multiple else if branches to check the typed name against
the names of some of your friends. Create personalised
messages for all of them.

o There may be a way to simplify your conditional greeting code
to use only one document.write statement. See if you can
figure out how. Hint – how might you use a variable called
greeting?

Project 2
o In many cases, the brevity of your conditional statements will

rely on your ability to formulate the right “questions” to
consider when performing your tests. Try to make your
solution to the following problem as concise as possible.

o Clear all of your current code from the script tags.

o Ensure that your script tags are currently situated in the body
section of the page.

o Create a variable called exam_result and store a numerical
value of between 0 and 100 in it.

JavaScript for Beginners 47

o Use an if statement and multiple else if statements to
check the value of this variable against the following exam
grading scheme, and print out the appropriate message to the
page:

Exam Result Result Message

90 or more Excellent. Pass with Distinction.

Between 70 and 89 Well Done. Pass with Honours

Between 55 and 69 Just passed.

54 or below Failed. Do better next time.

o Test your result in your browser. Vary the value of
exam_result and check the value shown in the browser. For
extra practise, try to use a prompt box to make changes to your
exam_result variable as easy to achieve as possible.

JavaScript for Beginners 48

14 Looping

Key Points
o The letters i, j and k are traditionally used by programmers to

name variables that are used as counters. For example, at
different stages of the program, i may contain the numbers 1,
2, 3 etc.

o In order to achieve a “counting” effect, you will need to
increment or decrement the value of your counting variable
by a set value. Here are some examples:

i = i + 1;

i = i - 1;

i = i + 35;

incr = 10
i = i + incr;

o To keep things concise, we can use the following shortcuts:

i++; // equivalent to i = i + 1;
i--; // equivalent to i = i + 1;

o Counting in JavaScript, like many other programming
languages, often begins at zero.

JavaScript for Beginners 49

o In many cases, this makes a lot of sense, as we will see.
However, it can often cause confusion. Consider starting at 0
and counting up to 10. In that case, we may have actually
counted 11 items:

0 (1)
1 (2)
2 (3)
3 (4)
4 (5)
5 (6)
6 (7)
7 (8)
8 (9)
10 (11!)

o If you wanted to give an instruction to someone to perform a
repetitive action, you might say that you wanted them to
continue the action for a certain number of times. If someone
were performing an action 300 times, for example, they might
do something like the following to ensure that their count was
accurate:

o Write the number 1 on a bit of paper.

o After each action, erase the number on the bit of paper and
increment it by 1.

o Before each action, check the number on the bit of paper. If it
is less than or equal to 300, perform the action.

o Alternatively, they might decide to start counting at 0. In this
case, the procedure would be identical, but the check before
each action would be to make sure that the number was strictly
less than 300.

o In JavaScript, we say almost the same thing. The following
code will display the numbers 1 to 100 on the page:

for (i = 1; i <= 100; i++)
 {
 document.write(“<p>” + i “ </p>”);
 }

JavaScript for Beginners 50

o The for statement tells the browser that we are about to
perform a loop. The layout here is very similar to a conditional
statement, but in this case we have much more information in
the brackets. Where our conditional had one JavaScript
statement to describe its action, a for loop has three:

o An initialiser – this sets up the initial counting condition, in
this case i = 1.

o A conditional – this is identical to our conditional statements
earlier, and must return true or false. If it returns true, the
loop continues, otherwise it exits.

o An incrementer – this defines the action to be performed at the
end of each loop. In this case, i is incremented by a value of 1.

o The key difference between a conditional and a for loop is that
the condition is constantly being changed and re-evaluated. It
is possible to create an infinite loop by making the conditional
non-reliant on the count value – for example:

for (i=0; 5 > 4; i++)

will always perform the script in the braces, and will probably
cause errors in the browser.

o Note too that it is very common to start counting at zero in
JavaScript. The reason for this is that it is often desirable to
count how many times an operation has been performed.
Consider the following:

for (i=1; 1 < 2; i++)

o In this case, the loop will run once, but the value of i will be 2,
as after the first run, i will be incremented to 2, and will then
fail the test and so the loop will exit. If we use the following:

for (i=0; 1 < 1; i++)

Then the loop will run once, and the value of i afterwards will
be 1, as we might hope.

Project
o Open your previous project file, and save it under the name

chapter_14.html.

o Clear all JavaScript code from your script tags.

JavaScript for Beginners 51

o Write a series of statements to produce a multiplication table as
follows:

o The following exercise is more of an HTML example, but
demonstrates an important facet of using JavaScript (or,
indeed, any programming language) to produce well-formatted
text.

o Modify your previous code to make your page’s content
appear in the centre of the page. Put your multiplication table
in an HTML table to make sure that the equals signs,
multiplication signs and so forth line up in neat columns:

JavaScript for Beginners 52

o As a hint, here is a look at the table cells involved:

JavaScript for Beginners 53

15 Arrays

Key points
o In many cases, variables will completely satisfy our data

storage needs in JavaScript. However, in a large number of
cases, we may wish to “group” variables into a collection of
related items.

o Take, for example, days of the week. In each day we perform a
number of tasks, so we could want to record each task as a
separate item under a group called, say, Monday’s Tasks.

o In JavaScript, to achieve this we would store each task in a
separate variable, and then group those variables together into
an array.

o An array is a special type of JavaScript object that can store
multiple data values – unlike a variable, which can only store
one data value at a time.

o It could be helpful to think of an array as a row of mail boxes
in an office, just as you might think of a variable as a single,
solitary mail box.

o The boxes in an array are numbered upwards, starting at box
number 0 – note that counting begins at 0 here, just as we
discussed in the previous chapter. The number assigned to each
box is known as its index.

JavaScript for Beginners 54

o In order to use an array in JavaScript, you must first create it.
There are a number of ways to create arrays in JavaScript. The
simplest follows:

arrDays = new Array();

This statement creates a new, empty array called arrDays. We
can call arrays just like we can variables, but with a few minor
adjustments.

o If you already know how many elements a given array will
have, you can declare this explicitly:

arrDays = new Array(7);

This modification creates an array with 7 empty boxes.
However, arrays will expand and contract to the required size
in JavaScript, so the cases where you will need to state the size
of the array are rare.

o More useful, however, is the ability to “fill” the boxes of an
array when you create it. For example:

arrDays = new Array(“Monday”,”Tuesday”);

We now have an array with two elements. The first (element 0)
has a value of “Monday”, while the second (element 1) has a
value of “Tuesday”. We need not restrict ourselves to string
values in arrays – Boolean, numerical and string values are
allowed, as in arrays. It is even possible to assign other arrays
to array elements – more on this later.

o The most often-used way of creating an array is to use “square
bracket” notation. Square brackets play a large role in the use
of arrays, so this is often the easiest method to remember:

arrDays = [“Monday”,”Tuesday”];

This is identical to the previous example.

JavaScript for Beginners 55

o To access an array’s elements, we first call the array’s name,
and then specify the number of the element in square brackets,
like so:

alert(arrDays[0]);

Note the lack of quotes around the 0 here. This line of code is
equivalent to:

alert(“Monday”);

assuming the array is defined as in the previous examples.

o Not only can we access the value of an array element using this
notation, but we can also assign the value as well:

arrDays[2] = “Tuesday”;
arrDays[3] = “Wednesday”;

o If you wish to add an element to an array without knowing the
index of the last element, you can use the following code:

arrDays[] = “some other day”;

o As we will see, arrays are actually just special JavaScript
objects, and have properties and methods associated with them.
The most important property that every array has is its length
property:

how_many_days = arrDays.length;

o As well as properties, arrays have very useful methods. If you
wished to sort your array alphanumerically, you could use the
array’s sort method thus:

arrDays.sort();

Note that the sort method works on the actual array itself, over-
writing the current values. So, if you had an array with each
day of the week as an element, calling its sort method would
mean that arrDays[0] was then equal to “Friday”, not
“Monday”.

Project
o Open your previous project file, and save it under the name

chapter_15.html.

JavaScript for Beginners 56

o Clear all JavaScript code from your script tags.

o Write a few JavaScript statements that will present the months
of the year on the page in alphabetical order. You should use
the following technique to achieve this:

o Store the names of the months of the year in an array.

o Use an array method to sort the array elements
alphanumerically.

o Use a for loop to iterate through each array element in turn,
and print the value of the element to the screen (hint, consider
the use of array[i], where i is the for loop’s counter).

o The above method (the use of a for loop to iterate through a
series of array elements) is one of the first common
programming techniques we have discussed in this course. Its
usefulness cannot be overstated, as it allows us to perform
repetitive tasks on a series of related elements without
necessarily knowing what those elements might be when we
wrote the code. It can be applied to form elements, cookies,
page elements, pages, windows, and just about any other
collection of object that you might wish to manipulate with
JavaScript.

o To reinforce this generalism, if you have not used the
array.length value in your loop, consider its use now. To
prove that you have created a more generic loop, try the code
with an array of days instead of an array of months, and see if
you have to change any of the looping code.

JavaScript for Beginners 57

16 Associative & Objective Arrays

Key Points
o We have already seen that we can access array elements by

their index:

arrDays = [“Monday”, “Tuesday”];

// print “Monday” to the page
document.write(arrDays[0]);

o However, it might be more useful to be able to name our array
elements. By default, an array will be created as a numeric
array. We can also create an associative array:

arrDays = new Array();

arrDays[“Monday”] = “Go to the dentist”;
arrDays[“Tuesday”] = “Attend JavaScript
class”;
arrDays[“Wednesday”] = “JavaScript homework”;

// remind you of Wednesday’s task
alert(arrDays[“Wednesday”]);

o This looks a lot like our previous discussion of objects and
properties. In fact, since an array is actually an object, we can
access its elements as though they were properties:

// remind you of Wednesday’s task
alert(arrDays.Wedensday);

JavaScript for Beginners 58

o Note a subtle difference here – in our previous, numeric array
examples, the names of the week days were the values of our
array elements. Here, the names of the week days are the
indexes of our elements. Avoid the following common error:

arrDays = [“Monday”,“Tuesday”];
arrDays[“Monday”] = “Go to work”;

// this is actually equivalent to
arrDays = new Array();

arrDays[0] = “Monday”;
arrDays[1] = “Tuesday”;
arrDays[“Monday”] = “Go to work”;

// and arrDays.length is now 3, not 2

Project
o Open your previous project file, and save it under the name

chapter_16.html.

o Clear all JavaScript code from your script tags.

o Write a new script which creates a new, seven element
associative array called Week:

o Use the days of the week as indexes for each element of the
array.

o Assign a task to each day of the week as each associative
element is created.

o Use a for loop to display a calendar on the page, as follows:

Monday: task
Tuesday: task

etc…

o Modify your code to use a prompt box to ask the visitor to
choose a day, and display on the page the task allotted to that
day.

JavaScript for Beginners 59

17 Two Dimensional Arrays

Key Points
o Referring back to our mailbox analogy, where our array could

be pictured as a row of mailboxes, each with its own contents
and label, a two dimensional array can be thought of as a series
of these rows of mailboxes, stacked on top of each other.

o In reality, a two dimensional array is simply an array in
which each element is itself an array. Each “sub array” of a
two dimensional array can be of a different length – in other
words, the two dimensional array doesn’t have to be “square”.

o You can access the contents of each sub array by using two
pairs of square brackets instead of just one. An example will
illustrate this best:

array_1 = [“element”, “element 2”];
array_2 = [“another element”, 2, 98, true];

array_3 = [array_1, array_2];

alert(array_3[1][3]); // displays “98”

o While you can’t mix numerical and string indexing systems in
a single array (i.e. an array cannot be both numerical and
associative), you can have both associative and numerical
arrays in two dimensional arrays. For example, consider the
above recast as follows:

array_3 = new Array();
array_3[“firstArray”] = array_1;
array_3[“secondArray”] = array_2;

alert(array_3[“secondArray”][3]);
 //displays “98” again

JavaScript for Beginners 60

o Similarly, we can happily use our “objective” notation for
associative arrays:

alert(array_3.secondArray[3]);
 //displays “98” yet again

Project
o Open your previous project file, and save it under the name

chapter_17.html.

o Building on your previous project, create a number of new,
seven element associative arrays to represent 4 separate weeks.

o Combine these 4 weeks into a four element array to represent a
month.

o Modify your previous code to take a week number and print
out all that week’s activities to the page.

o Modify one of your week arrays to consist not of single
elements, but of arrays of hours from 8am to 5pm. This then
represents a three dimensional array. We can extend arrays to
be n-dimensional, where n is more or less arbitrary.

o Finally, alter your code to prompt the user for three values – a
week, a day and an hour. Store these values in three separate
variables, and use those variables to display the requested task,
or else to display an error message if a task cannot be found.

JavaScript for Beginners 61

18 String Manipulation

Key Points
o Throughout your use of JavaScript in a production

environment, you will often use it to read values from
variables, and alter a behaviour based on what it finds.

o We have already seen some basic string reading in the section
on comparisons where we test for equality. However, this all-
or-nothing approach is often not subtle enough for our
purposes.

o Take the case where we want to check a user’s name against a
list of known users. If the user enters their name as “Karen”,
for example, that will be fine if and only if they spell the name
precisely as we have it recorded, including capitalisation etc. If
the user decides to type in her full name, say “Karen
Aaronofsky”, the code will not recognise her.

o In this case, we want to see if the text “Karen” appears at all in
the string. We call this substring searching, and it can be
incredibly useful.

o One of the simplest substring searches is done by using the
indexOf method. Every string-type variable has this method
associated with it. Consider this code:

var_1 = “Karen Aaronofsky”;
var_2 = var_1.indexOf(“Karen”);

In this case, the value of var_2 will be 0 – remembering that
JavaScript begins counting at 0!

JavaScript for Beginners 62

o If we were to search for a surname here:

var_1 = “Karen Aaronofsky”;
var_2 = var_1.indexOf(“Aaronofsky”);

var_2 will have a value of 6.

o Finally, if the search were to “fail”, so say we searched for the
name “Anisa” as a substring, the value of var_2 would then
be -1.

o Note that this is more flexible, but still presents an issue if the
user forgets to capitalise any of the substrings that we are
searching for – in JavaScript, “Karen” does not equal “karen”.

o In order to get around this, we might want to ensure that
capitalisation is not taken into account. A simple way to
achieve this is to force strings into lowercase before the check
is performed:

real_name = “Karen”;
name = prompt(“Your name?”,””);

real_name = real_name.toLowerCase();
try_name = try_name.toLowerCase();

if (try_name.indexOf(real_name) > -1)
{
 alert(“Hello Karen!”);
}
else
{
 // note we use the original,
 // non-lower-cased name here
 alert(“Welcome “ + name);
}

o There are a number of string methods we can use to perform
“value checks” on strings. A few are printed in the following
table:

Method Behaviour

String.indexOf(“str”) Returns the numerical position of the first
character of the substring “str” in the String

String.charAt(x) Returns the character at position x in the
string – the opposite of indexOf

JavaScript for Beginners 63

String.toLowerCase() Returns a copy of the string with all capital
letters replaced by their lowercase
counterparts

String.toUpperCase() Returns a copy of the string with all
lowercase letters replaced by their capital
counterparts

String.match(/exp/) Returns true or false based on a regular
expression search of the string

o The final method here deserves some comment. What is a
regular expression?

o A regular expression is a standard way of writing down a
“pattern” of characters that is easily recognisable. For example,
consider a typical email address:

jonathan@relativesanity.com

o An email address follows a “pattern” which makes it instantly
recognisable as an email address to a human. Wouldn’t it be
handy if we could define that pattern in JavaScript for a
browser to use? Regular expressions allow us to do just that.

o Let’s look at our email address again. We can break it down to
a “prototype” email address as follows:

[some letters]@[some more letters].[a few more letters]

o Of course, it’s slightly more complex than that – there are
some characters which aren’t allowed to be in certain parts of
the email address (no spaces, for example), but this lets you
see the idea of breaking this string up into required “chunks”.

o Now, to convert this to a regular expression. Just as we use
quote marks to denote (or “delimit”) string values in
JavaScript, to signify a regular expression, we use forward
slashes: /. Our email address regular expression might look like
this:

/^.+@.+\..+$/

o This warrants some discussion. Let’s look at this a character at
a time:

o / denotes the start of the regular expression

JavaScript for Beginners 64

o ^ denotes that we want this regular expression to be found at
the very beginning of the string we are searching.

o .+ the dot symbol is used to stand in for any character. The
plus signifies we want to find at least one of those. So this is
equivalent to our plain-English phrase [some letters].

o @ this is simply a character – it has no special meaning other
than to say we want to find an @ character after at least one
character from the beginning of the string.

o .+ the same as before – at least one more character after the @.

o \. This is interesting. We know that the dot symbol has a
special meaning in a regular expression – it means “match any
character”. However, here we want to find an actual dot.
Unlike @, which has no special meaning, we have to tell
JavaScript to ignore the dots special meaning. We do this by
preceding it with a backslash, which tells JavaScript to treat
the character immediately following it as though it has no
special meaning. This is a convention you will come across
many times while programming. The net result here is that we
want to match a dot after a series of characters.

o .+ and again, at least one more character after the dot.

o $ this is the mirror of the ^ at the beginning – this matches the
end of the tested string.

o / tells JavaScript we are at the end of the regular expression.

o Phew! Lots to consider here. Regular expressions are an arcane
art at the best of times, so don’t worry too much if the above
code is indecipherable. The important thing to realise at the
moment is that we can perform some quite sophisticated
pattern recognition in JavaScript without having to resort to
checking each individual character of a string multiple times.

JavaScript for Beginners 65

o The following code checks a variable to see if it looks like an
email address:

var_1 = prompt(“Your email?”, “”);

if (var_1.match(/^.+@.+\..+$/))
{
 alert(“valid email address”);
}
else
{
 alert(“are you sure?”);
}

o There are a few problems with this code at the moment – for
example, it will pass the string “-@-.-“ quite happily, which is
clearly wrong. We will look at ways around this later on in the
course.

Project
o Open your previous project file, and save it under the name

chapter_18.html.

o Clear all JavaScript code from your script tags.

o Use a prompt box to capture some user input to a variable
called check_string.

o Use a document.write statement to output the results of each of
the various string methods when applied to the user input.

o Check the user input to see if it’s an email address, and alter
your output accordingly to either “That’s an email address” or
“That doesn’t look like an email address to me!”

o In the latter case, output the failed string as well so that the
user can see their input and modify it next time, if appropriate.

JavaScript for Beginners 66

19 Using Functions

Key Points
o A function is a named set of JavaScript statements that

perform a task and appear inside the standard <script> tags.
The task can be simple or complex, and the name of the
function is up to you, within similar constraints to the naming
of variables.

o JavaScript functions are declared before they are used. The
declaration looks like this:

function name_of_function()
{
 …your code here…
}

o Unlike all the JavaScript instructions we have looked at so far,
the code inside a function will not be run until specifically
requested. Such a request is called a function call.

o Functions can be called from anywhere on the page that
JavaScript can live, but must be called after the function has
been declared. For example, if you declare a function in the
body of a document and then call it from the head of the
document, you may find that the browser returns an error
message. For this reason, most JavaScript programmers define
any functions they are going to use between <script> tags in
the head section of their pages to ensure that they are all
defined before they are used.

o Functions are to object methods as variables are to object
properties – they are also called in a similar manner. To run the
code contained in the name_of_function function above,
we would use the following line of code:

name_of_function();

JavaScript for Beginners 67

o Note the parentheses after the function name. This lets
JavaScript know that we are dealing with a function and not a
variable. The parentheses also allow us to “pass” extra
information to the function, which can alter its behaviour.
Consider the following function:

function greet_user(username)
{
 message = “Hello “ + username;
 alert(message);
}

o Whenever the function is called, it will greet the user named.
How can we pass this information through? Consider:

greet_user(“Anisa”);

or

var_1 = prompt(“Name?”, “”);
greet_user(var_1);

o We should use functions in our code as often as possible.
Whenever we perform an action that isn’t accomplished by the
use of a method or an assignment operator, we should try to
build a function that can accomplish the task.

o For example, we can build a function to check email addresses:

function check_email(address)
{
 var_1 = false;
 if (address.match(/^.+@.+\..+$/))
 {
 var_1 = true;
 }
}

o The above function will take a string that is passed to it (often
called the function’s argument), and will alter the value of
var_1 depending on what it finds. However, the function is
lacking an important ability – the ability to communicate its
findings back out to the rest of the script.

JavaScript for Beginners 68

o We have mentioned return values a few times in the notes.
Now we see a situation that requires a function to return its
findings to the rest of the code. Ideally, we’d like to be able to
use the above function as follows:

if (check_email(address))
{
 …do some email things…
}

o In order for this to work, the return value from check_email
would have to be a Boolean value. We can arrange this quite
simply:

function check_email(address)
{
 var_1 = false;
 if (address.match(/^.+@.+\..+$/))
 {
 var_1 = true;
 }
 return var_1;
}

o Since var_1 is either true or false, the returned value will be
Boolean. We can even skip the use of the variable here and be
more direct:

function check_email(address)
{
 if (address.match(/^.+@.+\..+$/))
 {
 return true;
 }
 return false;
}

or even better, since address.match() will return a Boolean
value of its own:

function check_email(address)
{
 return address.match(/^.+@.+\..+$);
}

JavaScript for Beginners 69

o The above function may not seem like a great saving. After all,
we are using four lines of code to define a function that
performs only one line of code. Compare:

function check_email(address)
{
 return address.match(/^.+@.+\..+$);
}

if (check_email(address))
{
 …do some email things…
}

with:

if (address.match(/^.+@.+\..+$/))
{
 …do some email things…
}

o While the benefits here are not obvious, consider the case
where, at some point in the future, you discover a better
method of checking for email addresses. In the second case
abov, you will have to search your code for each and every
instance of that method, and replace it with your new method,
which may not be one line of code. In the first case, you will
just have to change the underlying function definition, and the
“upgrade” will be effective throughout your code without you
having to update each occurrence.

Project
o Open your previous project file, and save it under the name

chapter_19.html.

o Clear all JavaScript code from your script tags.

o Ensure that you have a script element in the head area of your
document, and one in the body area.

o In the head area, define a function called show_message. This
function should take one argument, called message, and
should use an alert box to display the contents of the argument.

o In the body area, call the function with various messages as
arguments.

JavaScript for Beginners 70

o Now use a variable in the body area to store the return value of
a prompt asking the user for a message. Use this variable as the
argument to a single instance of show_message.

o Define a new function in the head area called get_message.
It should take no argument, but should replicate the function of
your prompt in the body area and ask the user for a message
via a prompt box.

o Make sure that get_message returns a sensible value. We
are aiming to replace our prompt statement in the body area
with the following code:

message = get_message();

so consider what you will have to return to enable this to work.

o Once you are happy with your get_message definition, try
replacing your prompt code in the body area with the statement
above.

o To demonstrate the power of functions, change the action of
show_message to write the message to the page without
changing any code in the body area of the page.

JavaScript for Beginners 71

20 Logical Operators

Key Points
o In our discussion of conditionals, we saw how to check the

veracity of a single condition via a comparator:

if (x > some_value)
{
 …expressions…
}

o We have also seen the limitations of such an approach. Let us
say we wanted to discover if x lay between two values, say
val_1 and val_2. There are a number of ways we could
achieve this. In our example on student grades, we learned that
we could use an if…else pair to achieve this effect:

if (x > val_1)
{
 …do something…
}
else
if (x > val_2)
{
 …do something else…
}

o The above code achieves what we want – for the second
branch, x must lie between val_2 and val_1 (assuming
val_1 is greater than val_2, of course). However, it’s rather
unwieldy, and does not scale elegantly to checking three
conditions (say we wanted to check if x was an even number
as well), or in fact to ten conditions.

o Enter Logical Operators. These operators are used to join
together conditional checks and return true or false depending
on whether all or any of the checks are true.

JavaScript for Beginners 72

o In English, we refer to these operators by using the words
“AND” and “OR”.

o For example, say we wanted to do something each Tuesday at
8pm. We would want to check whether the current day was
Tuesday, and whether the time was 8pm.

o Another example: Let’s say we wanted to do something on the
first Tuesday of each month, and also on the 3rd of the month
as well. We would have to check whether the current day was
the first Tuesday of the month, or whether it was the 3rd day of
the month.

o Note in the last example, if both conditions were true, then we
would be on Tuesday the 3rd and would perform the action. In
other words, an or condition allows for either one, or the other,
or both conditions to be true.

JavaScript for Beginners 73

o In JavaScript, we use the following syntax to check multiple
conditions:

(100 > 10 && 5 < 8)

translates as “if 100 is greater than 10 and 5 is less than 8”. In
this case, the result is true.

(100 > 200 && 4 < 9)

in this case, the result is false. Note here that only the first
condition is actually checked. Since and requires both
comparisons to be true, as soon as it finds a false one it stops
checking. This can be useful.

(100 > 10 || 9 < 8)

translates as “if 100 is greater than 10 or 9 is less than 8”. In
this case, the result is true, since at least one of the conditions
is met.

(100 > 200 || 4 > 9)

in this case, the result is false since neither of the comparisons
are true. Finally:

(100 > 200 || 5 < 2 || 3 > 2)

in this case, the result is true. Any one of the three being true
will provide this result.

o As we can see from the last example, this method of checking
scales to any number of conditions. We can also mix and
match the operators. For example:

((100 > 200 && 100 > 300) || 100 > 2)

in this case, the and condition evaluates to false, but since
either that or the last condition has to be true to return true, the
overall condition returns true as 100 is indeed greater than 2.

o This sort of complex logic can take a while to comprehend,
and will not form a set part of the course. However, it is useful
to be aware of it.

JavaScript for Beginners 74

Project
o Open your previous project file, and save it under the name

chapter_20.html.

o Clear all JavaScript code from your script tags.

o Ensure that you have a script element in the head area of your
document, and one in the body area.

o Copy the file available_plugins.js from the network
drive (your tutor will demonstrate this), and open it using
NotePad’s File > Open command.

o Copy and paste the entire contents of
available_plugins.js into your current project file, into
the script element in the head area of your page.

o Have a read through the code. Note that it defines a large, two
dimensional array. The array has a list of various components
that can be present in web browsers (such as Flash or
Quicktime)

o Add a function to the head area script element, called
flash_exists(). This function should use a for loop to
check each of the elements of the available_plugins array
and establish if Flash is present.

o Add a further function to the head area script element, called
quicktime_exists(). This function should also use a for
loop to check each element of the array, this time returning
true if Quicktime is present.

o Finally, add a function to the head area script element called
both_quicktime_and_flash_exist(). This function
should call both of the previous functions, store their results in
a variable, and produce an alert box containing the message:

o “Both Quicktime and Flash” if both functions returned true; or:

o “One of Quicktime or Flash is missing” if either of the
functions return false.

o Call the final function from the body area script element.

o Check your results in your browser.

JavaScript for Beginners 75

21 Using Event Handlers

Key Points
o So far, our scripts have run as soon as the browser page has

loaded. Even when we have used functions to “package” our
code, those functions have run as soon as they have been called
in the page, or not at all if no call was made. In other words,
the only event our scripts have so far responded to has been the
event of our page loading into the browser window.

o Most of the time, however, you will want your code to respond
specifically to user activities. You will want to define
functions, and have them spring into action only when the user
does something. Enter event handlers.

o Every time a user interacts with the page, the browser tells
JavaScript about an “event” happening. That event could be a
mouse click, a mouse pointer moving over or out of a given
element (such as an image or a paragraph), a user tabbing to a
new part of an HTML form, the user leaving the page, the user
submitting a form and so on.

o An event handler is a bit of JavaScript code that allows us to
capture each event as it happens, and respond to it by running
some JavaScript code.

o In general, we attach event handlers to specific HTML tags, so
a mouse click on one element of the page might be captured by
an event handler, but clicking somewhere else might do
something completely different, or indeed nothing at all.

o Some common event handlers are in the table below:

Event Handler Occurs When…

onload An element is loaded on the page

JavaScript for Beginners 76

onunload An element is not loaded, for example when
a user leaves a page

onmouseover When the mouse pointer enters the area
defined by an HTML element

onmouseout When the mouse pointer leaves the area
defined by an HTML element

onclick When the left mouse button is clicked within
the area defined by an HTML element

onmousedown When the left mouse button is depressed
within the area defined by an HTML
element

onmouseup When the left mouse button is released
within the area defined by an HTML
element

o The last three are related, but there are subtle differences –
onclick is defined as being when both mousedown and
mouseup events happen in the given element’s area. For
example, if you click on an area of the page, that registers the
area’s mousedown event. If you then hold the mouse down and
move to another area before releasing, it will register the other
area’s mouseup event. The browser’s click event, however,
will remain unregistered.

o In theory, we can add most of these event handlers to just
about any HTML tag we want. In practise, many browsers
restrict what we can interact with.

o We will mostly be attaching event handlers to , <a> and
<body> tags.

o To attach an event handler to a tag, we use the following
method:

link

o We can use this method to attach any event handler listed
above to the elements of the page. In addition to calling
functions (with any optional arguments, of course), we can
write JavaScript directly into our event handlers:

link

JavaScript for Beginners 77

o Note the potential issue with quote marks here – if you use
double quotes around your event handler, you need to use
single quotes within and vice versa.

Project
o Open your previous project file, and save it under the name

chapter_21.html.

o Clear all JavaScript code from your script tags.

o Ensure that you have a script element in the head area of your
document, and none in the body area.

o Within the head area script element, define the following
function:

function set_status(msg)
{
 window.status = msg;
}

o When called, this function will set the text displayed in the
browser’s status bar (the part of the window below the page
content) to whatever is passed as an argument. For example, to
set the status bar to display “Welcome”, we would call:

set_status(“Welcome”);

o Now define the following function immediately below the last:

function clear_status()
{
 set_status(“”);
}

o When called, this function will clear the status bar. Notice that
we are using our previous function within the new one. This is
a common programming technique that allows us to define
functions of specific cases using more general functions.

o Now, add the following HTML to the body area of your page.
Remember, we’re adding HTML here, not JavaScript, so do
not be tempted to use script tags for this part of the project:

<a href=”#” ↵
 onmouseover=”set_status(‘hello’);” ↵
 onmouseout=”clear_status();”>testing

JavaScript for Beginners 78

o Load the page in your browser and observe what happens
when you move your mouse over the link.

o The # value for the href attribute of the link allows us to define
a “dead” link on the page. Clicking on the link will take you
nowhere – try it.

o Now, alter the code to have the link point at a real website that
you know of.

o Clicking on the link now will take you away from the page.
Let’s say we want to suppress that behaviour.

o When an event handler intercepts an event, it pauses the
normal action of the event. For example, if you used an onclick
handler on a link to pop up an alert box, the link would only be
followed after the alert box had been dismissed. We can use
event handlers to cancel the action if required by using their
return values.

o Add a new function to the head area script element:

function confirm_link()
{
 check = confirm(“This will take you ↵
 away from our site. Are you sure?”);
 return check;
}

o The value of check will be true or false.

o Now, modify your link to contain the following event handler:

onclick=”return confirm_link();”

o By using the word return in our event handler, the response
of the function will be used to decide whether the rest of the
normal action is run. In this case, if confirm_link()
returns false, our link action will be cancelled.

o Load your page in your browser and view the result.

JavaScript for Beginners 79

22 Working with Images

Key Points
o In HTML, we can identify specific elements on the page using

an id attribute. For example, to “name” an image, we can use
the following code:

o To refer to this element in JavaScript, we can now get to it
directly by its id value:

document.getElementById(“theLogo”)

o This method will return an object that refers to the given
element on the page. If no such element can be found, the
method will return false.

o For easier use, we can assign the object found to a variable.
For example, to create an object called our_logo in our scripts,
we can use the following line of code:

our_logo = document.getElementById(“theLogo”);

o The resultant object has a number of properties. Since, in this
case, our object represents an image element, its properties
include:

our_logo.height
our_logo.width
our_logo.src

o We can use JavaScript to change any of these properties, so if
we wanted to change the image displayed, we could do so as
follows:

our_logo.src = “new_logo.gif”;

JavaScript for Beginners 80

Project
o Copy the folder called images from the network drive to your

project folder.

o Open your previous project file, and save it under the name
chapter_22.html.

o Clear all JavaScript code from your script tags.

o Ensure that you have a script element in the head area of your
document, and none in the body area.

o Within the body area of your page, create an image element
that loads an image from the images folder. Give the element
an appropriate id attribute.

o In the head area script element, define a function called
describe_image() that will pop up an alert box containing the
following information about your image:

the image file used
the image width
the image height

o To have each bit of text appear on a separate line, you can add
the following character to your alert text:

\n

for example

alert(“line one\nLine two”);

o Load your page in the browser and view the results.

JavaScript for Beginners 81

23 Simple Image Rollovers

Key Points
o A simple image rollover is an effect which happens when the

mouse appears over an image (usually a linked button) on the
page. The original image is replaced by another of equal size,
usually giving the effect that the button is highlighted in some
way.

o With what we have learned so far, we already have the ability
to create a simple image rollover effect. All that remains is to
clarify the particulars of the process:

o The page is loaded and the original image appears on the page
as specified by the tag’s src attribute.

o The mouse moves offer the image and the alternative image is
loaded into place.

o The mouse leaves the image and the original image is loaded
back.

o As you may have realised, we are going to use JavaScript to
alter the src attribute of the image tag. The best way to think
of this is to picture the tag as simply a space on the
page into which an image file can be loaded. The src attribute
tells the browser which image to load into the space, and so if
we change that value, the image will be changed.

o In other words, the id attribute of the tag is naming the
“space”, not the image.

JavaScript for Beginners 82

o Now, in order to alter the src attribute with JavaScript, we need
to tell JavaScript which image “space” we want to alter. We
use the id attribute along with the getElementById() method
from the last chapter to do this:

button_img = ↵
 document.getElementById(“button”);

button_img.src = “new_image.jpg”;

o We can directly insert this code into the image’s event handler:

<img src=”old.jpg” id=”button” ↵
 onmouseover=↵
 ”document.getElementById(‘button’).src ↵
 = ’new.jpg’;”>

o Note that this code is suddenly very convoluted. There are two
immediate potential solutions. The first is to define a function:

function swap_image(id, new_image)
{
 img = document.getElementById(id);
 img.src = new_image;
}

…

<img src=”old.jpg” id=”button” ↵
 onmouseover= ↵
 ”swap_image(‘button’, ‘new.jpg’);”>

o This is a much cleaner solution, and more importantly we can
use this for any images on the page, simply by changing the
arguments of our function call. We can also use the function to
achieve the “swap back” functionality:

…

<img src=”old.jpg” id=”button” ↵
 onmouseover= ↵
 ”swap_image(‘button’, ‘new.jpg’);” ↵
 onmouseout= ↵
 ”swap_image(‘button’, ‘old.jpg’);”>

JavaScript for Beginners 83

o We can go even further in “cleaning up” our code, though.
Because the event handler is being used to alter the object
which is experiencing the event (ie, the mouse is moving over
the image tag that we are trying to change), we can use the
“automagic” JavaScript object this to perform the operation:

function swap_image(img, new_image)
{
 img.src = new_image;
}

…

<img src=”old.jpg” id=”button” ↵
 onmouseover= ↵
 ”swap_image(this, ‘new.jpg’);”>

o Note a couple of things. Firstly, this has no quotes around it
– we are using it like a variable name. Secondly, our function
now uses the first argument directly, instead of using it to get
the relevant object from the page. We can do that because
this is actually an object – it’s an object that takes on the
properties and methods of whatever object it is called from, in
this case, it becomes equivalent to
document.getElementById(‘button’), although is
obviously much shorter!

o Using this has some limitations. For example, if we wanted
to change the src attribute of any other image on the page
when the mouse moved over “button”, we would be unable
to use this, and hence would have to define another function
that could take an id as its argument and get the relevant object
that way.

Project
o Copy the folder called buttons from the network drive to

your project folder.

o Open your previous project file, and save it under the name
chapter_23.html.

o Clear all JavaScript code from your script tags.

o Ensure that you have a script element in the head area of your
document, and none in the body area.

JavaScript for Beginners 84

o Within the body area of your page, create a paragraph
containing six image elements. Set the src attributes of the
images to load the following files in your copied buttons
folder, and give each a sensible id:

o contacts.jpg

o home.jpg

o people.jpg

o products.jpg

o quotes.jpg

o whatsnew.jpg

o Create a JavaScript function in the head area script element
that takes two arguments – an id and a file name. It should
alter the src property of the appropriate image object to the file
name given.

o Use this function to swap the src attribute of the contacts
button to contactsover.jpg when the mouse moves over
the image.

o Once you have this working, update the remaining five images
with event handlers to swap their src attributes to their
appropriate “over” image.

o Add event handlers to all six images to ensure that they return
to their original state when the mouse is moved away from
them. Check your work in your browser

o Add a new paragraph above the previous one, and add an
 tag to it to containing the file rocollogo.jpg from
the images folder.

o Add a text link to a new paragraph between the two
paragraphs. The link should be a “dummy” link (ie use “#” as
its href attribute value), but when the mouse moves over it,
the image above it should change to show rocollogo.gif.

o Moving the mouse away from the text link should return the
logo to its previous state.

o Check your work in your browser.

JavaScript for Beginners 85

24 Object Instantiation and Better
Rollovers

Key Points
o So far we have seen a very simple example of an image

rollover. It is functional and works as desired, but it is lacking
in a few finer details.

o Specifically, when we use JavaScript to change the src
attribute of an tag, the browser has to load this image
from scratch. On our local machine, this will not cause an
appreciable delay, but when dealing with a remote server (as
we will be on the Internet), this delay can lead to a noticeable
“lag”, which can destroy the feeling of a dynamic interface.

o Ideally, we would like to instruct the browser to load any
alternate images when it loads the page. This will allow us to
ensure that the new images are sitting on the user’s computer,
ready to be swapped in and out instantly.

o To do this, we need to look at object variables and object
instantiation (or creation). In particular, we need to look at
the Image object.

o Each tag on the page has a corresponding Image object
in JavaScript. We have looked at ways of manipulating this
directly, and have an idea of some of the properties an Image
object can have.

o However, we can create Image objects directly in JavaScript,
without the need for a corresponding tag on the page.
When we create such an object, and set its src property, the
browser will load the appropriate file into memory, but will not
display the image on the page.

JavaScript for Beginners 86

o In other words, we can create “virtual” images that exist within
JavaScript, and use these Image objects to store the alternate
images for our “real” images.

o To create an Image object (in fact, to create any object), we
need to use the following code:

virtual_image = new Image();

o We have seen this sort of syntax before – the use of the new
keyword when we created our Arrays. new tells JavaScript that
we are creating a new object. The virtual_image part of the
assignment is just a variable name. In this case, the variable is
an Object Variable, since it contains an object.

o To use this variable to preload our images, we take advantage
of the fact that it has the same properties and methods as any
other image:

virtual_image.src = “contactsover.jpg”;

o The browser will now preload our image, ready to be swapped
in at a later time.

Project
o Open your previous project file, and save it under the name

chapter_24.html.

o Starting with your previous code, create a new function called
preload_images in the head area script element of your page.

o Use this function to create seven new image objects, and use
each objects corresponding object variable to preload your
“over” image variations.

o Check your work in your browser to ensure that the image
swapping still works as expected.

o Add your preload_images function to the body tag of your
page to ensure that it runs when the page has finished loading.
Use the following syntax:

<body onload=”preload_images();”>

JavaScript for Beginners 87

o Once you have verified that the image swapping still works as
expected, expand your preload_images function to define an
array of images to preload, and then use a for loop to move
through the array and assign each image to the src property of
an object variable. Hint: an object variable can be anything
that can store information – for example an array element.

o Check your work in your browser.

JavaScript for Beginners 88

25 Working with Browser Windows

Key Points
o Using standard HTML links, we can open new browser

windows:

link

o The amount of control this method affords us over the resultant
image, however, is nil. We cannot control the size, shape,
location on the screen or anything else about that window with
this method.

o JavaScript allows us much finer control, as we may expect:

window.open(page_url, name, parameters);

o As we can see from the above prototype, there are only three
arguments that this method can take. However, the
parameters argument is actually more complex than we
might assume:

”param1,param2,param3,param4…”

since we can use it to add many parameters to the method.
Note there are no spaces in the parameter list.

o name is used to give the window an HTML name – so we can
use that name to open links into the new window using the
“target” method above.

JavaScript for Beginners 89

o The return value from the open method is an object variable
referring to the newly opened window. In other words, if we
open a new window like so:

win = window.open(“page.html”, “”, “”);

we can use the object variable win to alter the new window
through JavaScript.

o A practical example – let’s say we want to open a new window
300 pixels high by 400 pixels wide, and display the BBC news
page in it. The following code would suffice:

window.open(“http://news.bbc.co.uk/”, ↵
 “bbc”, “width=300,height=300”);

o Some available parameters are given in the table below:

Parameter Value Function

location Yes/no Specifies whether or not the location
(address) bar is displayed

menubar Yes/no Specifies whether the menu bar is
displayed

status Yes/no Specifies whether the status bar is
displayed

width Pixels Specifies the width of the new window

height Pixels Specifies the height of the new window

resizable Yes/no Allow or disallow window resizing

scrollbars Yes/no Allow or disallow window scrolling

o If no parameters are set, then the value of each parameter is set
to “yes” where appropriate. For example:

window.open(“http://www.bbc.co.uk/”, ↵
 “bbc”, “”);

is equivalent to:

JavaScript for Beginners 90

o However, if any parameter is set, all others default to “no”. So
if you wanted to have a scrollbar but nothing else, the
following would suffice:

window.open(“http://www.bbc.co.uk/”, ↵
 “bbc”, “scrollbars=yes”);

Project
o Open your previous project file, and save it under the name

chapter_25.html.

o Remove all functions and HTML from your previous file,
leaving only the logo image and the link.

o Create a function in the head area script element called
view_new_logo. This function should:

 Open a new window 200 pixels square.

 Load the image rocollogo.jpg from the images folder.

 Be called RocolLogo

 Be stored in an object variable called objNewLogo.

 Have no scrollbars, be of a fixed size, and have no other
features where possible.

o Remove all event handlers from the link, and add a new one to
run the function above when the link is clicked.

o Once you have verified that a window pops up as required
when the link is clicked, test each parameter from the table
above in the function.

JavaScript for Beginners 91

26 Positioning Browser Windows

Key Points
o The screen object provides you with access to properties of the

user’s computer display screen within your JavaScript
applications.

o Some of the available properties are:

Property Description

availHeight The pixel height of the user’s screen minus the
toolbar and any other permanent objects (eg the
Windows Taskbar)

availWidth As availHeight, but dealing with horizontal space

colorDepth The maximum number of colours the user’s screen
can display (in bit format, eg 24 bit, 16 bit etc)

height The true pixel height of the user’s display

width The true pixel width of the user’s display

o The left and top parameters of the open() method enable
you to specify the position of a window on screen by
specifying the number of pixels from the left and top of the
screen respectively.

o If you need to use a variable to specify the value of a parameter
in the open() method, you would do so as follows:

window.open(“index.html”, “window_name”, ↵
 “width=200,height=200,left=”+var_left+ ↵
 “top=”+var_top);

Where var_left and var_top are the appropriate variables.

JavaScript for Beginners 92

o Note the use of the + operator to ensure that the third
parameter in the open() method remains as one string when
variables are added.

o In order to centre the window on the user’s screen, a little
simple geometry is required. The centre of the screen is
obviously the point found when we take the width of the
screen divided by two, and take the height of the screen
divided by two. However, if we set the window’s top and left
values to these coordinates, the top left corner of the window
will be centred, not the window itself.

o In order to centre the window, we need to subtract half of the
window’s height from our top value, and half of the window’s
width from our left value. A simple script to accomplish this is
as follows:

win_width = 200;
win_height = 200;

win_left = (screen.availWidth/2) ↵
 - (win_width/2);
win_top = (screen.availHeight/2) ↵
 - (win_height/2);

o By using this script, the values of win_left and win_top will be
set correctly for any window using win_width and win_height
appropriately to be centred on the screen.

Project
o Open your previous project file, and save it under the name

chapter_26.html.

o Modify your existing code to ensure that the logo appears
centred on the user’s screen. If possible, do not modify your
original function by doing anything more than two new
functions – get_win_left(width) and
get_win_top(height).

JavaScript for Beginners 93

27 Focus and Blur

Key Points
o The focus() method of the window object gives focus to a

particular window. In other words, it ensures that the window
is placed on top of any other windows, and is made active by
the computer. For example, if we have created a new window
and stored the result in an object variable called new_window,
we could ensure that the window was brought back to the front
at any point after it had been opened by using the following
code:

new_window.focus();

o Conversely, we can use the blur() method to remove focus
from the specified window – returning focus to the previously
selected one as appropriate. Its use is similar to the focus()
method.

o Both these events have associated event handlers: onblur and
onfocus. However, since they do not have associated HTML
tags, how can we attach event handlers to the object?

o It turns out that, within JavaScript, each object has an
individual property for each event handler it can have applied
to it. For example, if we wanted to add an event handler to an
image tag on the page, we could apply either of the following
methods to do that:

<img src=”…” id=”test_img” ↵
onclick=”do_something();” />

<script>
document.getElementById(“test_img”).onclick=↵
 do_something();
</script>

JavaScript for Beginners 94

o So, to attach a function to a window’s focus event, we could
use:

new_window.onfocus = some_function();

Project
o Open your previous project file, and save it under the name

chapter_27.html.

o Modify your function to open another window as well as the
original one, with the following features:

 The second window should be called oldRocolLogo,
should be assigned to the object variable objOldLogo, and
display the old logo from the file
images/rocollogo.gif.

 When opened, the windows should be positioned so that
both can be clearly seen.

o Test your modifications at this point.

o Observe the function’s action when the windows are opened,
then the original window is placed in front of them and the
function is invoked again.

o Add a new statement to the function which uses the focus()
method to ensure that when the function is called, both new
windows are moved to the top of the “stack” of windows.

o Observe which logo appears “on top” when the function is
called. Use the focus() method again to alter this.

JavaScript for Beginners 95

28 Dynamically Created Content

Key Points
o It’s quite easy to create a new page on demand using

JavaScript. In this context, we are talking about creating a
completely new page in a window without loading any file into
that window.

o To do this, invoke the open() method of the window object,
leaving the location parameter empty:

new_win = window.open(“”, “newWin”, ↵
 “params…”);

o Next, remember that you can write HTML code to a page
using the window’s document.write() method. Up until
now, we have used only the current window’s document
object. However, we can specify which window’s document
we want to manipulate as follows:

document.write(); // write to current window
new_win.document.write(); // or new window

For example:

new_win.document.write(“<html><head>”);
new_win.document.write(“<title>demo</title>”):
new_win.document.write(“</head><body>”);
new_win.document.write(“<h1>Hello!</h1>”);
new_win.document.write(“</body></html>”);

Project
o Open your previous project file, and save it under the name

chapter_28.html.

JavaScript for Beginners 96

o Modify your existing script to create a third window with the
following properties:

 The window should be called newHTML, and be assigned to
the object variable objNewHTML.

 It should be 400 pixels square.

 It should not load any page when it is created. It should
display the word “Welcome” as an H1 header.

 It should contain a paragraph with the text “Please decide
which logo you would like to choose.”

 The third window should carry the title “Rocol Art”

 When all windows have been opened, the third window
should be focussed.

o Check your work in the browser.

JavaScript for Beginners 97

29 Working with Multiple Windows

Key Points
o The window object’s close() method enables you to close a

window. If you have an object variable in the current window
referring to the window you wish to close, you can simply use:

new_window.close();

to close the window.

o Things are a little more complicated when you wish to close a
window from a window other than the one which opened the
new window. In order to tackle this, we need to think about
window scope.

o When we write JavaScript into our code, all functions and
variables within that script are available for us to use within
that window. For example, if we have a function called
say_hello() in our main window, we can easily call that
function. However, if we want to call the function from a
newly opened window, we cannot call it directly from the new
window, as our functions and variables are “tied” to the
windows in which they were first defined.

o This is why, when we want to write to any window other than
the one containing our JavaScript code, we must access the
document object of that window in order to put content in the
right place,

o But how about in the other direction? Let’s say we use a
function in our main window (call it window 1) to open a new
window (window 2). If we store window 2 as an object
variable, we can access all properties of window 2 from
window 1 by using that object. The question is, how do we
access any properties of window 1 from window 2?

JavaScript for Beginners 98

o The key is that window 2 and window 1 have a special
relationship – a “parent/child” relationship. We can access any
property of window 1 from window 2 by using the special
object called opener. This is an object created within any
window that has been opened by JavaScript, and it always
refers to the window that opened the new window.

o To illustrate this, let’s consider our previous project. We have
three new windows, and one “parent” window. If we wanted to
use an event handler on one of the new windows to close on of
the other new windows, we would need to first access the
parent window, and then access the object variable within the
parent window that pointed to the window we wanted to close.

o Let’s say we wanted to close window_2 from a link in
window_1. We would have to create an event handler in the
link with the following code:

onclick=”opener.window_2.close();”

Project
o Open your previous project file, and save it under the name

chapter_29.html.

o Modify your existing script to achieve the following:

 Add two new paragraphs to the third window’s content
containing the following text:

The Old Logo

The New Logo

 Each line should be contained in a hyperlink whose event
handler accesses the parent window’s object variable
pointing to the appropriate new window. Its close()
method should then be invoked.

o Check your work in the browser.

JavaScript for Beginners 99

30 Using an External Script File

Key Points
o JavaScript can easily save us from having to type lots of

HTML. As we have seen, we can use JavaScript to generate
large form elements and tables using a small amount of code.
This is good news for us, as it makes our work easier. It is also
good news for our visitors, as they only have to download a
small amount of code for a relatively large amount of content.

o However, we can do better. As it is, if we have one function
that will generate a year drop down menu for a form’s date of
birth section, we need to include that function in every page
that requires it. This means that our visitors are downloading
identical content multiple times. In addition, if we change or
improve our function, we have to ensure that we update that
function in every page that has it included.

o HTML allows us to solve this problem by providing a
mechanism to load an external text file into the HTML page
and treat its contents as JavaScript code. Since it is a separate
file, once it has been downloaded once, the browser will not
download further copies of the file if it is requested by another
page. In other words, we can load all our JavaScript code into
one file, and any changes there will instantly be reflected
across the entire site.

o To use code in an external file, we still use the <script> tag
– but with a new attribute, the src attribute. This is very
similar to loading an image file on to a page:

<script language=”JavaScript” ↵
 type=”text/JavaScript” ↵
 src=”s/script_file.js”></script>

o Note three things:

JavaScript for Beginners 100

 The language and type attributes are essential here.

 The script tag still has a closing </script> tag.

 We cannot add any further JavaScript between the tags
when we are using the tags to load an external file. To add
JavaScript to the current page only, we have to use a second
set of <script> tags.

Project
o Open your previous project file, and save it under the name

chapter_30.html.

o Move all your JavaScript function definitions, and any other
code in the head section script element to a new file called
script.js.

o Modify your head section script element to load code from the
new file.

o Check that your page still works as expected.

o NOTE: the .js file extension is just a naming convention.
<script> tags will load JavaScript from any text file (hence
the need to include the type and language attributes). However,
it is a widely used convention, and it is worth sticking to in
order to keep your code easily understood by anyone who may
work on your code in the future.

JavaScript for Beginners 101

31 Javascript and Forms

Key Points
o Without JavaScript, the server handles all validating and

processing of information submitted via a form. Using
JavaScript on the client side of the equation saves time for the
user and creates a more efficient process.

o Some processing can be handled by JavaScript (for example,
mathematical computations) and JavaScript can ensure that
only correct data is sent to the server for processing.

o JavaScript is used in conjunction with server-side processing –
it is not a substitute for it.

o To access information in a form we use the document object’s
getElementById() method, as we have previously to access
other objects on the page. For example, if we have a form on
the page like so:

<form id=”testForm” … >

</form>

we would access it in JavaScript by using:

document.getElementById(‘testForm’);

o The resultant object is actually a multi-dimensional array.
Each of its elements is itself an array containing information
about the elements of the form (text boxes, buttons etc). By
properly naming each of the form’s elements in the appropriate
<INPUT> tags, you can access information relating to each of
the form’s elements.

JavaScript for Beginners 102

o To access the data stored in a text box called Name which is
included in the form with the id Enquiry you use the value
property like so:

objForm = document.getElementById(‘Enquiry’);

strValue = objForm.Name.value

o There are two ways of sending form data to the server. Using
the method attribute, you can specify either the GET or the
POST methods:

<form id =”enquiryform” method=”GET”…

or

<form id =”enquiryform” method=”POST”…

o In general, you should use the POST method if you want to
send a lot of data (eg files, large amounts of text) from your
form. You should use GET if you want to process search forms
etc, as a GET form will be transmitted just like a URL, and is
hence “savable” as a bookmark or link.

o In general, you will send your form to a server side script,
specified by the form’s action attribute:

<form id=”enquiryform” method=”GET”
→ action=”process.php”…

o When the user clicks on a form’s Submit button, without
JavaScript intervention, the form’s data is sent straight to the
server for processing. But you can intercept the data (so you
can process it with JavaScript) before it is sent, by including
the onsubmit event handler in the <form> tag. This enables
you to run a JavaScript function before the data is sent:

<form id=”enquiryform” method=”GET”
→ action=”process.php”
→ onsubmit=”functionName()”>

o In the above example, when the user clicks on the Submit
button, the function functionName() is run first, then the
data is sent to the server.

JavaScript for Beginners 103

o When the submit event is triggered by the form’s submission,
the browser waits to discover what is returned from the event
handler. By default, the event handler will return true.
However, if the event handler returns a false value, the
form’s submission will be aborted, and the page will not be
submitted to the server.

o By returning a value of either true or false from your function
(functionName() in the above example), and ensuring that
this is also the return value of the onsubmit event handler,
you can decide whether or not the form’s data is actually sent
to the server.

o You specify that the return value of the function is also the
return value of the onsubmit event handler in the following
way:

onsubmit=”return functionName();”

Project
o Open your previous project file, and save it under the name

chapter_31.html.

o Clear any content from the body element of the page, and
ensure that the head area script element has no code in it.

o Save a copy of this page as processing_31.html, and put
an <h1> element in the body area saying “success!”.

o Now, close your processing_31.html page and create a
form on your original chapter_31.html page using HTML
– if you have difficulty with this, the tutor will provide an
example to duplicate. Your form should:

 have an id of jsCourseForm.

 have a single input box with an name value of name.

 have a submit button.

 use the GET method of submission.

 have processing_31.html as its action attribute.

JavaScript for Beginners 104

 have an onsubmit event handler that returns the value of the
(as yet non-existent) check_form() function.

o Now, create a function in the head area script element called
check_form(). This function should:

 use the document’s getElementById() method to store a
reference to the form’s object in an object variable.

 store the value of the form’s name element in another
variable.

 if the value of the name element is not “Bugs Bunny”, an
alert box should appear stating:

Sorry chum!
Either you misspelled your name…
Or you haven’t got what it takes…
Try again.

 in addition, the form should be prevented from submitting.

o If the user enters the correct name, however, the form should
submit without interruption.

o Check your work in your browser.

JavaScript for Beginners 105

32 Form Methods and Event
Handlers

Key Points
o Each form object (e.g. text, button etc) has a set of properties

associated with it. This is different for each form element.
The value property is common to most form elements and is
one of the most useful properties.

o You can assign the data stored in a text box called Name which
is included in the form with id Enquiry, to a variable like
so:

variable = document.getElementById(‘Enquiry’).
→ Name.value

o Form objects also have methods associated with them. The set
of available methods is different for each form object.

o Below is a list of commonly used methods for the text object:

Method Description
blur() Removes the focus from the text box
focus() Gives the focus to the text box
select() Selects the text box

o Below is a list of commonly used methods for the button
object:

Method Description
blur() Removes the focus from the button
focus() Gives the focus to the button
click() Call’s the button’s onclick event handler

JavaScript for Beginners 106

o Form objects also have event handlers associated with them.
The set of available event handlers is different for each form
object.

o Below is a list of commonly used event handlers for the text
object:

Event handler Runs JavaScript code when…
onblur The text box loses the focus.
onfocus The text box receives the focus.
onselect The user selects some of the text within

the text box..
onchange The text box loses the focus and has had

its text modified.

o Below is a list of commonly used event handlers for the button
object:

Event handler Runs JavaScript code when…
onBlur The button loses the focus
onFocus The button receives the focus
onClick The user clicks the button

o Finally if you are sending data to the server, a submit button is
not the only way. You could use the submit() method in a
function which is invoked by an event handler. This operates
as if the Submit button was clicked:

document.getElementById(‘Enquiry’).submit();

Project
o Open your previous project file, and save it under the name

chapter_32.html.

o Modify your form in the following way:

 Remove the submit button

 Replace the submit button with a standard form button.

 Add an event handler to this button to invoke the function
in the head area script element.

 Remove the onsubmit event handler from the form
element.

JavaScript for Beginners 107

o Now, modify the check_form() function in the following
way:

 If the user types in the name “Bugs Bunny”, the function
submits the form using the form’s submit() method.

 If the user types anything else, the previous alert box
warning is displayed and the form is not submitted, but
also:

• The words “please try again” are displayed in the
text box.

• The text box is given focus.

• The text in the text box is selected.

o Check your work in your browser.

JavaScript for Beginners 108

33 JavaScript and Maths

Key Points
o The Math object is a pre-defined JavaScript object containing

properties and methods which you can use for mathematical
computation.

o Below is a selection of some useful Math methods:

Method Returns
Math.cell() The smallest integer greater than or equal to a number.

That is, it rounds up any number to the next integer.
Math.cell(2.6) returns 3 and so does
Math.cell(2.2).

Math.floor() The largest integer greater than or equal to a number.
That is, it rounds down any number to the next integer.
Math.floor(2.2) returns 2 and so does
Math.floor(2.6).

Math.max(n1,n2) The larger of the two arguments.
Math.min(n1,n2) The smaller of the two arguments.
Math.random() A random number between 0 and 1.
Math.round() The number rounded to its nearest integer.
Math.sqrt() The square root of a number.

o You don’t need to include a Submit button in a form and you
don’t need to send form data to the server. You could use
event handlers to invoke JavaScript code which merely
processes the data on the form (e.g. you may just perform
some mathematical computations on some user data).

JavaScript for Beginners 109

o If you are not sending the data to the server, there is no need to
include either the Action or Method attributes in the <FORM>
tag, though by default the Action will usually submit to the
current page, and the Method will be set to “get”.

Project
o Open your previous project file, and save it under the name

chapter_33.html.

o Remove all content from the body section of the page.

o Copy the file max_wins.html from the network, and open it
using NotePad’s File > Open command.

o Copy and paste the entire contents of max_wins.html into
your current project file, into the body element of the page.

o Remove all JavaScript code from the script element in the head
section of the page.

o Take some time to open your project file in a browser, and
study the code. This project will enable the page to:

 Generate two random numbers when the button is pressed.

 Display the random numbers in the text boxes marked
player 1 and player 2.

 Compare the two random numbers and display the name of
the player whose number is higher in the text box marked
winner.

o When studying the code, note that the form has no valid action
or method attributes. It also has no “submit” button. We are
not going to allow the form to submit to the server at all, but
are going to use JavaScript to do all our processing on the
form.

o Now, modify the HTML code on the page to add an event
handler to invoke a new function defined in the head area
script element. The function should perform the following
operations when the form button is clicked:

 Place two separate random integers between 0 and 100 in
each of the Player text boxes.

JavaScript for Beginners 110

 Find a way to use a Math method to compare the two
entered integers. Once compared, the function should then
place the appropriate value of Player 1, Player 2, or Draw
in the Winner text box.

o Check your work in your browser.

JavaScript for Beginners 111

34 Object Variables – A Refresher

Key Points
o Referring to objects can be a lengthy process. Consider the

Player 1 text box in the previous example. You refer to it in
full as follows:

document.getElementById(“MaxWins”).Player1

o This notation although precise, is tedious, time consuming and
can be prone to error. Luckily, there are some shortcuts which
can save time and reduce typing errors.

o We can use an object variable to simplify our work whenever
we are in situations where certain objects need to be referred to
repetitively. To use an object variable, you begin by simply
assigning it a specific object:

oPlayer1 =
→ document.getElementById(“MaxWins”).Player1

o Once assigned, you can use the object variable in any situation
where you would use the specific object itself. Using the object
variables from the previous paragraph:

oPlayer1.value

is the same as:

document.getElementById(“MaxWins”).Player1.value

JavaScript for Beginners 112

o Bear in mind that you assign objects to object variables. You would
assign a text box or a button or an image etc to an object variable and
then refer to that object’s properties as shown above
(oPlayer1.value). You don’t assign text or string values to object
variables. So:

oPlayer1 =
→ document.getElementById(“MaxWins”).Player1.value

would merely assign the value stored in Player1 to the variable
oPlayer1.

o Hopefully it is obvious that you don’t need to include the ‘o’ at
the beginning of the object variable’s name. It’s just a
convention to help distinguish between the different types of
variables.

Project
o Open your previous project file, and save it under the name

chapter_34.html.

o Modify the function in the head area script element in the
following way:

 All specific object which are referred to more than once are
each assigned their own object variable at the start of the
function.

 References to specific objects in the code are replaced by
the appropriate object variables.

o Test your work in your browser to ensure that it functions as
before.

JavaScript for Beginners 113

35 Actions From Menu Items

Key Points
o The HTML <select> form tag enables you to create a menu

(select box) of options from which the user can choose:

<form id=”menu”>

<select name=”Product”>
 <option value=”one”>Image one</option>
 <option value=”two”>Image two</option>
 <option Value=”three”>Image three</option>
</select>

</form>

o Ordinarily, selecting an option from a select box merely
specifies the value of the select box. This is then used for
further processing – either by JavaScript or by the server.

o You can use JavaScript to invoke actions based on the current
value of a select box (the selected option). These actions
might be directly loading another page or performing some
other type of processing.

o Another name for this type of action is a “jump menu”.

o In order to do this, you need to know that each select box on a
form has a select object associated with it. Using the above
example, you can therefore access the current value of the
Product select box (ie the value of its currently selected option)
which is located on the ProductMenu form, in the following
way:

document.getElementById(“menu”).Product.value

JavaScript for Beginners 114

o As you would expect, the select option has methods and event
handlers associated with it:

 The focus() method gives the focus to a select box.

 The blur() method removes the focus from the select box.

o The available event handlers for the select object are given
below:

Event handler Runs JavaScript code when….
onblur The select box loses the focus
onfocus The select box receives the focus
onchange The select box has had its value modified

o The way to invoke action(s) when the user selects an option
from a select box is to prepare a JavaScript function which will
be invoked using the select object’s onchange event handler:

<select name=”name” onchange=”functionname()”>

Project
o Open your previous project file, and save it under the name

chapter_35.html.

o Clear the head section script element of JavaScript, and
remove all content from the body area of the page.

o Create a form in the body area of the page. Give the form an id
of jumpMenu.

o In the form, place a select element. Give the select element the
following values and labels eg:

<select name=”menu”>
 <option value=”value”>label</option>
 …
</select>

Value Label
http://www.bbc.co.uk/ The BBC
http://www.google.com/ Google
http://www.hotmail.com/ Hotmail

JavaScript for Beginners 115

http://www.ed.ac.uk/ The University of Edinburgh
http://www.apple.com/ Apple Computer
http://www.microsoft.com/ Microsoft Corporation

o Finally, add an option element to the beginning of your menu
like so:

<option value=””>Select a destination</option>

o We are now going to use the menu’s onchange event handler
to invoke a function we are about to define. The function is to
be called jump_to_page().

o Define such a function in the head area script element. The
function should:

 Create an object variable referencing the form element that
represents the menu.

 Get the value of the menu at that moment.

 If the value is not equal to “” (ie, if a valid selection has
been made), the function should use the use JavaScript to
load the selected page into the browser.

o Check your work in your browser.

JavaScript for Beginners 116

36 Requiring Form Values or
Selections

Key Points
o Form data may be invalid if it is sent to the server without

certain information – for example, if the user has omitted to
select an item from a menu. Better not to bother processing,
than to waste the time of the user and server by trying to
process the invalid information.

o In the case of a selection box, one way of validating is to
include a null value for the default option. In the previous
project, the default value of the selection box (always the first
option unless specified otherwise) was “”. If the user doesn’t
actively make another selection, then you can check the value
of the selection box before sending it to the server.

o Another example is the case of a set of radio buttons. Imagine
that for an imaginery company, an order form contained two
form elements – a selection box to specify which product was
being ordered and two radio buttons to specify whether it was
being ordered as a photographic print or as a slide.

o Let’s say the id of the order form is OrderForm and the name
of each radio button is Format. (Remember that in HTML,
radio buttons in a set are related to each other by their name
that must be the same for each related radio button).

o The radio object is an array where each element of the array
stores information relating to each of the radio button objects
(remember, counting starts at 0).

JavaScript for Beginners 117

o As the name is identical for each radio button in the set, you
can’t access an individual radio button by using its name. But
you can access it using the standard array notation:

oOrderForm.Format[i]

where in this case, I is an integer between 0 and 1, and
oOrderForm is an object variable pointing to the form
element.

o Radio buttons in a set each have a checked property that stores
a Boolean value specifying whether or not a radio button is
checked. Obviously, you can access this value in the following
way:

oOrderForm.Format[i].checked

o So, to verify that in a set of radio buttons, at least one of them
is checked, all you have to do is loop through each of the radio
buttons using the array’s length property to specify the number
of iterations of the loop:

FormatSelected = false;
oOrderForm =
→ document.getElementById(“OrderForm”);

for (i=0; i < oOrderForm.Format.length; i++)
{
 if (oOrderForm.Format[i].checked)
 {
 FormatSelected = true;
 }
}

JavaScript for Beginners 118

o In our order form example, one of the products might only be
available as a slide. You could use the onchange event
handler of the select object to invoke a function which
automatically sets the value of the relevant radio object’s
checked property:

function SetFormat ()
{
 oOrderForm =
 → document.getElementById(“OrderForm”);
 if (oOrderForm.Product.value ==
 → “Greek Boat”)
 {
 oOrderForm.Format[0].checked = true;
 }
}

where Product is the name of the select box, Format is the
name of the group of radio buttons and the value of the first
ratio button is Slide.

o Finally, to reset all form objects to their initial state, use the
reset() method:

oFormObject.reset()

Project
o Open your previous project file, and save it under the name

chapter_36.html.

o Remove all content from the body section of the page.

o Copy the file order_form.html from the network, and open
it using NotePad’s File > Open command.

o Copy and paste the entire contents of order_form.html into
your current project file, into the body element of the page.

o Remove all JavaScript code from the script element in the head
section of the page.

o Take some time to open your project file in a browser, and
study the code.

JavaScript for Beginners 119

o Add an event handler to the form element on your page that
will invoke a function called check_form() when the form is
submitted. This function will return true or false depending
on whether the form passes a number of tests as described
below. Remember to precede the event handler’s function call
with return to ensure that the form awaits confirmation from
the function before proceeding.

o Create the check_form() function in the head area script
element. The function should perform the following steps:

 If the current value of the selection menu is “”:

• Display an alert with the message “please select a
product”

• Give focus to the menu

• Return false

 If no radio buttons are selected:

• Display an alter with the message “please specify a
format”

• Return false

 Otherwise, return true

o Check your work in your browser.

o The Greek Fishing Boat is only available in Slide format.
Add an event handler to the select element which will run a
function called set_format() when its value is changed.

o Create the function set_format() in the head area script
element. The function should check first what the value of the
menu is. If it is the Greek Fishing Boat, it should then check
to see if the Slide radio button is checked. If it is not, then the
function should correct this.

o Check your work in your browser.

o Modify your check_form() function to check that, if the value
of the menu is Greek Fishing Boat, then the Slide radio button
is checked. If not, it should report the error as before.

JavaScript for Beginners 120

o Finally, note that your check_form() function is currently
not very efficient, in that it will only report one error at a time.
This can be tedious for an error prone user, and it is much
better practise to observe a form for all errors simultaneously.

o Create a variable at the beginning of the function called
error. Set the value of this variable to “”.

o Instead of using an alert box each time an error is found, add
the error message to the end of the variable, eg

error += “error message\n”;

(note the new line code at the end of each message)

o After all checks have been made, if we have caught any errors, the
value of error will no longer be “”. Thus, we can use the
following code to report all errors at once:

if (error != “”)
{
 alert(“The following errors were found: \n\n”
 + error);
 return false;
}
else
{
 return true;
}

o Modify your function to be more efficient.

JavaScript for Beginners 121

37 Working with Dates

Key Points
o The date object stores all aspects of a date and time from year

to milliseconds.

o To use a new date object, you must create it and assign it to an
object variable simultaneously. The following code creates a
new date object which stores the current date and time and
assigns it to the variable dtNow

dtNow = new Date();

o You can specify your own parameters for the date object when
you create it:

theDate = new Date(
 year, month, day, hours,
 minutes, seconds, mseconds
);

o Note that months are represented by the numbers 0 to 11
(January to December). Days are represented by 1 to 31, hours
by 0 to 23, minutes and seconds by 0 to 59 and milliseconds by
0 to 999.

o The following code stores 17th July 2004 at 9:15:30pm in the
variable theDate:

theDate = new Date(2004,6,17,21,15,30,0);

o The first three parameters are mandatory, while the rest are
optional:

theDate = new Date(2004,6,17);

gives you midnight of the date above.

JavaScript for Beginners 122

o You can assign a date to a variable using a string in the
following way:

theDate =
 new Date(“Sun, 10 Oct 2000 21:15:00 – 0500);

o Everything from the hours onwards is optional, and in practical
terms the day is not necessary either. For example:

theDate = new Date(“10 Oct 2000”);

is a valid date.

Project
o Open your previous project file, and save it under the name

chapter_37.html.

o Remove all content from the body section of the page.

o Create a function in a head section script element that displays
an alert box containing the current date and time. Have this
function called from a body section script element.

o Now modify your script so that it also writes the date and time
17th July 1955 1:00am to the page in standard date and time
format. Do this by entering the appropriate parameters into the
new Date() constructor.

o Now, using parameters once again, add a new line to your
script that will display midnight on 17th July 2004 on a
separate line under the existing date.

o Finally, using the string approach in the date object, add a new
line to your script which will display midnight on 31st
December 1999 on a separate line under the existing
information and in standard date and time format.

JavaScript for Beginners 123

38 Retrieving Information from
Date Objects

Key Points
o Below is a selection of some useful methods which enable you

to retrieve some useful information from date objects:

Method Returns

getDate() The day of the month (1-31)

getDay() The day of the week (0 = Sunday, 6 = Saturday)

getFullYear() The year as four digits

getHours() The hour (0-23)

getMilliseconds() The milliseconds (0-999)

getMinutes() The minutes (0-59)

getMonth() The month (0-11)

getSeconds() The seconds (0-59)

getTime() The date and time in milliseconds – also called Unix
Time

o JavaScript stores date and time information internally as the
number of milliseconds from 1st January 1970. This is common
to most programming languages, and is actually the way most
computer systems store time information.

JavaScript for Beginners 124

o For example:

dtNow = new Date();
document.write(dtNow.getTime());

writes the number of milliseconds that have passed since 1st
January 1970.

o Being aware that there are 1000 milliseconds in a second, 60
seconds in a minute, 60 minutes in an hour and 24 hours in a
day, you can establish the number of days (or hours or minutes
etc) between two dates by subtracting on date in millisecond
format from the other in millisecond format. To achieve the
units you require, perform the appropriate division (so for the
number of minutes, divide the result of the subtraction first by
1000, then by 60), and then use Math.floor() on the result to
round the number down as required.

Project
o Open your previous project file, and save it under the name

chapter_38.html.

o Clear any JavaScript from the page’s script elements.

o Create a function in the head section script element that
performs the following:

 Create two arrays, one storing the days of the week
(“Sunday”, “Monday” etc), the other storing the months of
the year (“January”, “February” etc)

 Use a new date object, along with the arrays and the
appropriate date methods to write today’s date to the page
in the following format:

Today it is: dayName, month, dayNumber.

for example:

Today it is Tuesday, October 17.

JavaScript for Beginners 125

 Below the date, write the time in the following format:

It is currently hh:mm am (or pm)

Note: to convert from the 24hr clock, subtract 12 from any
value over 12, and replace a zero value with 12. Anything
greater than or equal to twelve should receive a “pm”
suffix.

 Below the time, write the number of days since the start of
the millennium in the following format:

It is n days since the start of the millennium.

o Finally, call your function from the body area script element
on your page, and check your work in your browser.

JavaScript for Beginners 126

39 Creating a JavaScript Clock

Key Points
o setTimeout() is a method of the window object. In its

common form, it enables you to run any JavaScript function
after an allotted time (in milliseconds) has passed. For
example:

window.setTimeout(“functionName()”, 1000)

will run functionName() after one second. Note the quote
marks!

o You can have any number of “timed out” methods running at
any one time. To identify each “timeout”, it is a good idea to
assign the return value of each one you create to an object
variable:

firstTimeout =
 window.setTimeout(“functionName()”, 1000)

o The most common reason to track timeouts is to be able to
cancel them if necessary – for example, you may wish a
window to close after 5 seconds unless a button is clicked:

firstTimeout =
 window.setTimeout(“window.close()”, 5000);

adding the following code to the button’s onclick event
handler:

window.clearTimeout(firstTimeout);

will do the trick.

JavaScript for Beginners 127

o Ordinarily, it is a bad idea to “recurse” a function – to have a
function call itself. For example, imagine the annoyance of the
following:

function annoy_me()
{
 window.alert(“BOO!”);
 annoy_me();
}

This will potentially keep popping up alert boxes, and perhaps
even lock up the user’s computer!

o However, you may wish a function to use a setTimeout
method to call itself periodically. Imagine a function that calls
itself every second to check on the time, and then displays the
result in the same place. In effect, this could be seen as a
digital clock.

o If you want to clear the clock’s timeout – which in this case
would stop the clock – the timeout must already be in
operation. You can’t clear a timeout that doesn’t yet exist. So,
you have to check first whether a timeout is in operation. One
way of doing this is to set a Boolean variable to true whenever
the clock is started. By checking this variable before you
attempt to clear the timeout, you know whether or not the
clock is running and therefore can be stopped.

o To show an am/pm clock you obviously need to carry out the
conversion you created in the previous chapter’s project.

o But, so as the display doesn’t show a “moving” effect at
different times, you need to consider the situation where either
the minutes or seconds on the clock are fewer than 10. For
example, consider:

10:59:59 am

changing to:

11:0:0 am

JavaScript for Beginners 128

o In this situation, we need to concatenate an extra “0” on to the
front of the actual value to produce:

11:00:00 am

as we might expect.

o We can use a shortened form of the if conditional to make this
simple. For example:

s = theDate.getSeconds;
s = (s < 10) ? “0” + s : s;

o What is happening here? First, we get the current value of the
seconds and store that in a variable called “s”. Next, we reset
the value of s depending on the condition in the brackets. The
prototype of this form of the if conditional is:

var = (condition)
 ? value if true
 : value if false;

in other words, we can think of the ? as being like the opening
brace { of an if conditional, the : as being the } else {, and the ;
as being the closing brace. The result of the conditional test is
then stored in var.

Note that this has been split over three lines to aid reading. In
practice (see above) we can place this on one line for ease of
use.

Project
o Open your previous project file, and save it under the name

chapter_39.html.

o Remove all content from the body section of the page.

o In the body section, create a form input element with the id
clockBox, and two form input buttons labelled Start and Stop.

o In the head section scrip element, create two empty functions –
start_clock() and stop_clock().

o Before the two function definitions, as the first statement of the
script element, create a variable called timer, and assign it a
value of null.

JavaScript for Beginners 129

o Immediately below that statement, create a variable called
timer_running. Assign it a value of false.

o We will use these variables to track the clock’s status.

o Now, add statements to the start_clock() function that will:

 Get the current time.

 Format the current time as hh:mm:ss am/pm (as
appropriate).

 Display the formatted time in the text field on the page.

 Create a timeout which will run the start_clock()
function again in half a second, and assign that timeout’s
return object to the timer object variable.

 Set the timer_running variable to true.

o Add statements to the stop_clock() function that will:

 Check to see if the clock is running.

 If it is, clear the timer timeout and set timer_running to
false.

o Finally, add event handlers to the two form buttons to ensure
that the one labelled Stop calls the function stop_clock()
when clicked, and the one labelled Start calls the function
start_clock() when clicked.

o While this should work (test your code!), you’ll notice that the
output is a little ugly. Displaying the time in a text field is not
the most unobtrusive way to show a clock on a page.

o Luckily, we can modify our code very slightly to achieve
something much more professional.

o Replace your input field with the following:

o is an HTML tag that allows you to mark areas of
content without any semantic meaning – eg, the clock is not a
paragraph or a header, so we don’t want to label it as such.

JavaScript for Beginners 130

o With JavaScript, we can control the content of just about any
element on the page. In our previous example, we used
getElementById (hopefully!) to obtain a reference to the
input field, and then altered its value property to show our
clock.

o Since we are using the same id value here, we do not have to
alter our function too much. However, the getElementById
method now returns a different type of object – one that has no
value property.

o However, all content tags in HTML (like <p>, <h1>, <div>
etc) have a special property when they are returned as
JavaScript objects which refers to their text content – the
property is innerHTML.

o We can use this to alter the content of the tags. For example, if
our previous input-field solution had the following code:

clk = document.getElementById(“clockBox”);
clk.value = formatted_time;

where formatted_time is a variable containing the
formatted time as required, then replacing it with this code:

clk = document.getElementById(“clockBox”);
clk.innerHTML = formatted_time;

will allow us to use the modified element in place of
the <input> element.

o Try adapting your code to use this method of displaying
content on the page.

Introduction to PHP
Lesson 1: Int ro duct io n

Working in CodeRunner
Creating a File
Managing your Files

Four characteristics o f PHP
1. PHP is a server-side language, with HTML embedding.
2. PHP is a Parsed language.
3. PHP works jo intly with SQL.
4. PHP is part o f the LAMP, WAMP, and MAMP stack.

Lesson 2: PHP Basics
PHP Delimiters and Comments

Variables in PHP

Modifying Variables and Values with Operators

Superglobals
$GLOBALS
$_SERVER:
$_GET
$_POST

Lesson 3: Decisio ns
Comparison Operators and Conditions

IF and ELSE Contro l Structure

Logical Operators
A Brief Preview of Forms

Lesson 4: Mult iple Co nt ro l St ruct ures and Lo o ps
Multiple Contro l Structures

WHILE and FOR Loops

Lesson 5: Funct io ns
Creating Code Reusability with Functions

Function and Variable Scopes

Using Functions with Parameters and Return Values
Sneaking In with Parameters
Sneaking out with Return Values
Multiple Parameters and Default Values

Lesson 6 : Arrays
Creating an Array

Associative Arrays

Creating Multi-Dimensional Arrays

Traversing and Manipulating Arrays
Traversing Associative Arrays with list() and each()

More built- in functions

Lesson 7: St rings
What's a String Anyway?

Manipulating Strings
Other nifty string shortcuts

Built- in String Functions

Regular Expressions
Character Ranges and Number o f Occurrences
Excluding Characters
Escaping Characters

Lesson 8 : Fixing Bro ken PHP
Things Professors Don't Talk About Enough

Debugging Tips
Utilizing Error Messages
Riddle-Me-This Error Messages
Errors without Error Messages
Logical Errors
Infinite Loops, Infinite Headaches

Notes on Scalable Programming
Before you Code, Pseudocode
Make your Program Readable
Comment Until You're Blue in the Face
Code in Bite-Size Chunks
Debug as You Work
Reuse Functions as Much as Possible
Utilize Available Resources

Lesson 9 : Fo rms in PHP
Forms Review

Using Superglobals to Read Form Inputs

Extracting Superglobals into Variables

Nesting Variable Names

Lesson 10: Ut ilizing Int ernet T o o ls
Environment and Server Variables

Using HTTP Headers

Manipulating Query Strings
Customizing specific error messages

Sending Emails

Lesson 11: Dat e and T ime
Date and Time Standards

Date and Time Functions
Constructing Dates and Times

Lesson 12: Using Files
Including and Requiring Files

Reading and Writing Files

Allowing Users to Download Files

Lesson 13: Co o kies and Sessio ns
Using Cookies

Knowing the User Through Sessions
Deleting Sessions

Lesson 14: Final Pro ject
Final Pro ject

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Introduction

Welcome to the O'Reilly School o f Technology Int ro duct io n t o PHP course!

In this PHP class, you will learn basic to intermediate programming aspects o f PHP--hypertext preprocessor. PHP is a versatile
server-side programming language that works hand-in-hand with front-end web languages such as HTML and JavaScript. PHP
can be used to create all types o f dynamic web interfaces, and because o f its open-source robustness, has become one o f the
most widely used programming languages for the internet.

Course Objectives
When you complete this course, you will be able to :

develop web applications using basic PHP elements such as delimiters, contro l structures, operators, variables,
arrays, and functions.
manipulate dates and strings using built- in PHP functions and regular expressions.
debug and improve code for better reusability and scalability.
create dynamic web forms using internet too ls such as input, environment and server variables, HTTP headers, and
query strings.
read, write, manage and download files through PHP-based web applications.
track user information using cookies and sessions.
build a full-fledged shopping cart system.

From beginning to end,you will learn by do ing your own PHP based pro jects. These pro jects, as well as the final pro ject, will
add to your portfo lio and provide needed experience. Besides a browser and internet connection, all so ftware is provided
online by the O'Reilly School o f Technology.

Learning with O'Reilly School of Technology Courses
As with every O'Reilly School o f Technology course, we'll take a user-active approach to learning. This means that you
(the user) will be active! You'll learn by do ing, building live programs, testing them and experimenting with them—
hands-on!

To learn a new skill o r techno logy, you have to experiment. The more you experiment, the more you learn. Our system
is designed to maximize experimentation and help you learn to learn a new skill.

We'll program as much as possible to be sure that the principles sink in and stay with you.

Each time we discuss a new concept, you'll put it into code and see what YOU can do with it. On occasion we'll even
give you code that doesn't work, so you can see common mistakes and how to recover from them. Making mistakes
is actually another good way to learn.

Above all, we want to help you to learn to learn. We give you the too ls to take contro l o f your own learning experience.

When you complete an OST course, you know the subject matter, and you know how to expand your knowledge, so
you can handle changes like software and operating system updates.

Here are some tips for using O'Reilly School o f Technology courses effectively:

T ype t he co de. Resist the temptation to cut and paste the example code we give you. Typing the code
actually gives you a feel fo r the programming task. Then play around with the examples to find out what else
you can make them do, and to check your understanding. It's highly unlikely you'll break anything by
experimentation. If you do break something, that's an indication to us that we need to improve our system!
T ake yo ur t ime. Learning takes time. Rushing can have negative effects on your progress. Slow down and
let your brain absorb the new information thoroughly. Taking your time helps to maintain a relaxed, positive
approach. It also gives you the chance to try new things and learn more than you o therwise would if you
blew through all o f the coursework too quickly.
Experiment . Wander from the path o ften and explore the possibilities. We can't anticipate all o f your
questions and ideas, so it's up to you to experiment and create on your own. Your instructor will help if you
go completely o ff the rails.
Accept guidance, but do n't depend o n it . Try to so lve problems on your own. Going from
misunderstanding to understanding is the best way to acquire a new skill. Part o f what you're learning is
problem so lving. Of course, you can always contact your instructor fo r hints when you need them.

Use all available reso urces! In real- life problem-so lving, you aren't bound by false limitations; in OST
courses, you are free to use any resources at your disposal to so lve problems you encounter: the Internet,
reference books, and online help are all fair game.
Have f un! Relax, keep practicing, and don't be afraid to make mistakes! Your instructor will keep you at it
until you've mastered the skill. We want you to get that satisfied, "I'm so coo l! I did it!" feeling. And you'll have
some pro jects to show off when you're done.

Lesson Format
We'll try out lo ts o f examples in each lesson. We'll have you write code, look at code, and edit existing code. The code
will be presented in boxes that will indicate what needs to be done to the code inside.

Whenever you see white boxes like the one below, you'll type the contents into the editor window to try the example
yourself. The CODE TO TYPE bar on top o f the white box contains directions for you to fo llow:

CODE TO TYPE:

White boxes like this contain code for you to try out (type into a file to run).

If you have already written some of the code, new code for you to add looks like this.

If we want you to remove existing code, the code to remove will look like this.

We may also include instructive comments that you don't need to type.

We may run programs and do some other activities in a terminal session in the operating system or o ther command-
line environment. These will be shown like this:

INTERACTIVE SESSION:

The plain black text that we present in these INTERACTIVE boxes is
provided by the system (not for you to type). The commands we want you to type look lik
e this.

Code and information presented in a gray OBSERVE box is fo r you to inspect and absorb. This information is o ften
co lor-coded, and fo llowed by text explaining the code in detail:

OBSERVE:

Gray "Observe" boxes like this contain information (usually code specifics) for you to
observe.

The paragraph(s) that fo llow may provide addition details on inf o rmat io n that was highlighted in the Observe box.

We'll also set especially pertinent information apart in "Note" boxes:

Note Notes provide information that is useful, but not abso lutely necessary for performing the tasks at hand.

Tip Tips provide information that might help make the too ls easier fo r you to use, such as shortcut keys.

WARNING Warnings provide information that can help prevent program crashes and data loss.

The CodeRunner Screen
This course is presented in CodeRunner, OST's self-contained environment. We'll discuss the details later, but here's
a quick overview of the various areas o f the screen:

These videos explain how to use CodeRunner:

File Management Demo

Code Editor Demo

Coursework Demo

Working in CodeRunner
Since CodeRunner is a multi-purpose editor, you need to make sure you're using the correct synt ax. In this course,
you will be using HTML and PHP. To start using HTML, choose the HT ML option:

To change to PHP, choose the PHP option:

Creating a File

http://www.youtube.com/watch?v=45sATp529Mw
http://www.youtube.com/watch?v=SvbM6vPAG9k
http://www.youtube.com/watch?v=WmajY8bIXrA

Let's create a file now. Select the HTML syntax and type the code as shown below.

Make sure you're using HTML syntax and type the fo llowing into CodeRunner:

Four characteristics of PHP:

 PHP is a server-side language with HTML embedding.
 PHP is a parsed language.
 PHP works hand-in-hand with SQL.
 PHP is part of the LAMP stack.

Managing your Files

Click the button. In the Save As text box, type f o urf act s.ht ml (be sure to include the html extension when
you Save html files).

You can also use the Save As () button to save a file with a different name. Try it now with the name
f o urf act s2.ht ml. Note that you are now editing fourfacts2.html, not fourfacts.html.

After you successfully save your file, anybody can go on the web, type the URL
(http://yourusername.o reillystudent.com/fourfacts.html) in the location bar o f their browser, and see this page.

To retrieve the original f o urf act s.ht ml, click the Lo ad File () button or double-click the file name in the
File Bro wser window.

Four characteristics of PHP
Look again at the HTML top-four list you just typed into CodeRunner, and click Preview:

Note Keep in mind that every time you Preview a file, your changes will be saved. Think about whether you
want the previous code overwritten or not. If no t, use Save As before you Preview.

Four characterist ics of PHP:

1. PHP is a server-side language with HTML embedding.
2. PHP is a parsed language.
3. PHP works hand-in-hand with SQL.
4. PHP is part of the LAMP stack.

Note
If the Preview button doesn't work for you, you may be blocking pop-up windows in your browser. To fix
this, change your configuration settings to allow pop-ups from the OST servers, or view your page
directly at http://yourusername.o reillystudent.com/fourfacts.html.

This example serves more than one purpose for us. It demonstrates how to use CodeRunner and it introduces some
keys to using PHP. Of course there's much more to PHP than this, but let's start with this.

1. PHP is a server-side language, with HTML embedding.

On the web there are two sides to everything: the Client Side and the Server Side. The Client side is the side
you are on right now. It consists o f your computer and your web browser. The server side is the side where
the web pages are stored and where programs are executed to build dynamic web pages with PHP.

Still have your HTML list? It's time to convert it to PHP. Swit ch Co deRunner t o PHP , and retype the top four
list into the editor. Then add the blue code below:

Make sure you're using PHP then type the fo llowing into CodeRunner:

<?php echo "Four characteristics of PHP:"; ?>

 PHP is a server-side language with HTML embedding.
 PHP is a parsed language.
 PHP works hand-in-hand with SQL.
 PHP is part of the LAMP stack.

Click Preview. This time save with the php (.php) extension. It looks exactly the same, right? But something
more happened this time on the back end.

You see, HTML is a Client side language. When you clicked Preview while in HT ML, the Sandbox simply
asked your browser to process the HTML tags without any outside help.

Conversely, PHP is a server side scripting language and builds HTML dynamically before sending to your
browser. Here's a diagram of how PHP works:

When you used Preview after adding the PHP code while using PHP syntax, the Learning Sandbox:

Took your code back to your Lab Account on our web server
Parsed it using the PHP Engine that's installed within your account
Returned the results to the browser as HTML

Then your browser rendered the HTML to make it look pretty. Did you notice how the addition o f PHP code at
the top o f the file did nothing to change the HTML list below? This is because the HTML is embedded into the
PHP file, and doesn't require anything else to output it.

2. PHP is a Parsed language.

The fact that PHP is a parsed language as opposed to a compiled language is a technical concern and
probably only interesting to programmers with experience in Compiled programming languages like Java or
C++. Those languages perform an additional task called compiling that turns the text from the program into a
form the computer understands. A binary file is created that serves as the thing that gets executed when a
program is running.

PHP is a Parsed language, meaning that you can see the results o f your code immediately after saving the
file, without any compiling or linking steps in between. That's because the compiled PHP engine installed on
your account takes the PHP file you've created and "parses" it and uses the commands you created to make
the server do something. All the work is still done by a compiled program, but the program you created
doesn't have to be compiled, since it just tells the compiled program what to do.

For the geeks out there, this is similar to an Int erpret ed language such as Perl; however, the parsing
process has been optimized to use a combination o f interpreting and compiling at run-t ime , enabling PHP
to be powerful AND fast.

The bottom line is the parsing action o f PHP makes your life easier. If you want to know more about parsed,
interpreted, and compiled languages, here's a good link.

3. PHP works jointly with SQL.

Let's look at your first PHP script again and add one more little piece o f code. Don't worry yet about what the
code means, at this po int we're just playing around.

Type the fo llowing (in BLUE) into CodeRunner:

<?php echo "Four facts about PHP:"; ?>
<ol style="font-size:16px;">
 PHP is a server-side language with HTML embedding.
 PHP is a parsed language.
 PHP works hand-in-hand with SQL.
<? printf("MySQL client info: %s\n", mysqli_get_client_info()); ?>
 PHP is part of the LAMP stack.

Click Preview. Now you should see the version o f MySQL library that's included with your account's PHP
engine, embedded within your HTML list. You'll learn a lo t more about the MySQL database in later courses,
but fo r now just ro ll with it.

PHP makes it easy to add database-driven content to any website. It supports popular database systems -
MySQL, PostgreSQL, Oracle, and o thers - with libraries o f built- in f unct io ns like the one you added above.
These libraries can be referred to by the acronym DBI: Database Interface.

Other programming languages such as Perl contain their own sets o f DBI libraries too. However, unlike Perl,
PHP was designed with database-driven websites in mind, and has become so closely intertwined with
MySQL that the two organizations now work together to ensure continued reciprocal support.

Here's a good O'Reilly article about PHP and MySQL.

4. PHP is part of the LAMP, WAMP, and MAMP stack.

What's a (L|W|M)AMP St ack?

It's yet another acronym.

Linux, Windows, Mac
Apache
MySQL
PHP (or Perl, o r both)

The St ack part refers to a group o f techno logies which, when used together, create powerful and dynamic
web applications. There are competing stacks, such as Microsoft's .NET framework and Sun's Java/J2EE
technologies. However, corporations are realizing more and more that the free, open-source LAMP Stack can
be just as powerful, safe, and lucrative for their businesses as the expensive, proprietary competito rs.

And by the way, lucky you! You have all the LAMP techno logies you need at your fingertips RIGHT NOW:

Your Learning Lab account is on a Linux RedHat server.
It's equipped with its own Apache web server.
The Apache server has MySQL installed on it.
It also has PHP AND Perl on it.

Alright, you're do ing great so far! Don't fo rget to Save your first PHP file (call it " f irst .php"), and work on this lesson's
assignments on the syllabus page. Be sure to read the comments on each pro ject or quiz using the "Graded" link. See you in
the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

http://www.answerbag.com/q_view/948
http://www.oreillynet.com/pub/a/network/2000/06/16/magazine/php_mysql.html?page=1

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

PHP Basics

Welcome back! In the next three lessons, we'll be playing around with a make-believe program to help demonstrate a few
programming concepts. While the faux-program isn't one you'd likely create while on the job, the concepts and techniques used
are the same. Let's get started!

PHP Delimiters and Comments
Open the file f irst .php. Or, if you're completely sick o f the Top Four list, start a new file. Make sure you're using PHP.

Type the fo llowing green and blue code into your chosen file in CodeRunner:

 <ol style="font-size:16px;">

 PHP is a server-side language, with HTML embedding.

 For instance:<br\>

 <?php
 echo "<li style='color:blue;'>
 This PHP code is INSIDE the PHP delimiters
 ";
 ?>
 <li style="color:green;">
 This HTML code is OUTSIDE the PHP delimiters

Now click Preview to see the results. What happened?

It should look something like this:

1. PHP is a server-side language, with HTML embedding.
For instance:

This PHP code is INSIDE the PHP delimiters.
This HTML code is OUTSIDE the PHP delimiters.

PHP co de is separated from embedded HT ML with delimit ers. The delimiters are the <?php and the ?> . All PHP is
written between these delimeters. An open delimiter <?php must have a closing delimiter ?> . Try taking the delimiters
away and see what happens.

Take a look at the PHP - notice that between the delimiters (<?php and ?>), the word echo showed up. That's a PHP
command that means "make this show up." Without echo, it won't show up. Remove the echo command and check
out the results.

Here the echo st at ement is used to return text to the web browser from a PHP script. The "echo" command just
means "print this out." And one more thing, all statements in PHP must end with a semico lon (;).

By the way, why did we put in those slashes (//) in the sample code above? Well, those are called "comments."
Commenting is a common practice in programming. Commenting records the specific reasons you had for writing the
program a particular way.

Type the blue text below into CodeRunner:

<ol style="font-size:16px;">
 PHP is a server-side language, with HTML embedding.

 For instance:

 <?php
 //Jerry says, "What's the deal with this line of PHP code?"
 /* Elaine says, "I want to talk about this line, that line, AND the other line!"
*/
 #George says, "...yadda yadda yadda..."
 echo "<li style='color:blue;'>
 This PHP code is INSIDE the PHP delimiters
 ";
 ?>
 <li style="color:green;">
 This HTML code is OUTSIDE the PHP delimiters

Now click Preview to see the results. Notice what ISN'T printed out on the screen. Our results look exactly the same
as before.

What happened to the entire conversation we added?

Ah, Jerry, Elaine, and George, always commenting on everything, yet do ing pretty much nothing. In fact, they behave a
lo t like co mment s in PHP, but in PHP, it's a developer who comments on the code without impacting the results at all.

Note Two slashes (//) o r one pound sign (#) will "comment out" the line that fo llows it. Or, you can comment
out multiple lines by surrounding them with /* and */. Play around a bit to get the hang o f it.

Comments may not seem like a big deal (they didn't to me at first either), but as our programs become more
complicated, it's useful to have reminders (in your own words) o f the specific reasons you chose to write your code a
certain way. Also, comments are essential fo r reusing and sharing code. They allow o ther developers to decipher and
understand the specifics o f the code you've written.

Let's experiment to discover the answers to these questions:

Can delimit ers share the same line as the PHP code?
Can they share the same line as HTML?
Can multiple st at ement s share one line?
Can st at ement s span multiple lines?
Does it matter whether you use <?php o r just <? ?
Can you mix a line o f code with a comment?

Variables in PHP
Every programming language has variables. Variables are places to store things. You can insert values into variables
and you can extract them. Variables are a lo t like dresser drawers. You can put things in and then take them out, and
you usually know what each drawer contains.

Add the fo llowing blue text to your file in CodeRunner:

<ol style="font-size:16px;">
 PHP is part of the LAMP stack.
 <?php
 $lamp_l = "Linux";
 $lamp_a = "Apache";
 $lamp_m = "MySQL";
 $lamp_p = "PHP";
 ?>

Now Preview that.

Not much happening, right? That's because we forgot to echo something. Let's go ahead and do that so we get an
output.

Add the fo llowing blue text to your file in CodeRunner:

<ol style="font-size:16px;">
 PHP is part of the LAMP stack.
 <?php
 $lamp_l = "Linux";
 $lamp_a = "Apache";
 $lamp_m = "MySQL";
 $lamp_p = "PHP";
 echo $lamp_a;
 ?>

Now you should see the word Apache printed on your page. Why do you suppose that is? After all, we wrote Echo
$lamp_a;, you'd think that would be the word that printed. Well, as it turns out, $lamp_a is a variable. Variables in PHP
always begin with a $. And, as if $lamp_a was a drawer, we put something in it, we inserted = "Apache" . Then, in
order to get something out o f the variable $lamp_a, we "echoed" by adding echo $lamp_a. Finally, "Apache," the
value we put into the variable (or drawer) in the first place was printed out. They are called "variables" because the
value can vary. We can change the contents o f the variable at anytime, and that makes them very useful fo r storing and
retrieving values dynamically.

Just like you can put different items in the appropriate drawers o f your dresser--you might have a sock drawer for your
socks, a shirt drawer for your shirts, etc.--you can put different kinds o f values in variables. In the example above,
we've entered words into our variables. In programming, these words are called st rings because they comprise a
string o f letters or characters.

Let's put different kinds o f values into some other variables.

Add the fo llowing blue text to your file in CodeRunner:

<ol style="font-size:16px;">
 PHP is part of the LAMP stack.
 <?php
 $lamp_l = "Linux"; $lamp_a = "Apache"; $lamp_m = "MySQL"; $lamp_p = "PHP";
 ?>
 /* Here are some imaginary numbers for a possible salary package associated with the
skills we're learning in this course (play along!): */
 <?php
 $base_salary = 158470;
 //whoa. we hit the jackpot
 $bonus = 25815.25;
 $benefits = 0.2;
 //percentage of total
 $time_off = 6476; //in dollars
 ?>

Here we're assigning different kinds o f values (like 158470) to variables. In this context, assigning simply means to
"fill" the variable with a value.

We've assigned the various PHP variables values o f three basic t ypes: int eger, f lo at ing po int (decimal) , and
st ring. Integers are whole numbers, including negative numbers and 0 . Floating po int numbers are numbers that may
have a decimal po int. Strings, as we already mentioned, are simply successive strings o f characters.

Below is a list o f the t ypes we've assigned to the variables listed:

Variable Name Assigned Value Value T ype

$lamp_l "Linux" string

$lamp_a "Apache" string

$lamp_m "MySQL" string

$lamp_p "PHP" string

$base_salary 158470 integer

$bonus 25815.25 float

$benefits 0 .2 float

$time_off 6476 integer

Let's go back to our dresser analogy for a moment. It will help us to understand the difference between "strongly typed"
programming languages and languages like PHP, which are not strongly typed. Programming languages that are
strongly typed require you to decide the types o f variables you're go ing to have upon creating your files. Once you've
created your variables, you are committed. They cannot be revised. It's like labeling your drawers, so that you can only
put socks in your sock labeled drawer and shirts in your shirt labeled drawer. And after you've labled these drawers,
you can't change them. PHP, however, is not strongly typed. Therefore, the variables remain flexible, we are allowed to
change them, and we can put any type o f information into a PHP file that we wish.

Since PHP is NOT a st ro ngly t yped programming language, the fo llowing won't break your script:

Type the fo llowing blue text below into CodeRunner:

<ol style="font-size:16px;">
 PHP is part of the LAMP stack.
 <?php
 $lamp_l = "Linux";
 $lamp_a = "Apache";
 $lamp_m = "MySQL";
 $lamp_p = "PHP";
 ?>
 <?php
 /* Here are some imaginary numbers for a possible salary package for the skills we'
re learning: */
 $base_salary = 158470;
 $bonus = 25815.25;
 $benefits = 0.2;
 //percentage of total
 $time_off = 6476;
 //in dollars
 $benefits = "this is a string now"; // You just changed the value of $benefits from
 a float number to a string!
 ?>

Go ahead and Preview it. Our variables are shy creatures! So far they've been hiding like comments when we
Preview. Let's add some HTML and echo out some of those variables.

Type the fo llowing blue and green text into your document in CodeRunner:

<ol style="font-size:16px;">
 PHP is part of the LAMP stack.
 <?php
 $lamp_l = "Linux";
 $lamp_a = "Apache";
 $lamp_m = "MySQL";
 $lamp_p = "PHP";
 ?>

 <?php
 /* Here are some imaginary numbers for a possible salary package for the skills we'
re learning: */
 $base_salary = 158470;
 $bonus = 25815.25;
 $benefits = 0.2;
 //percentage of total
 $time_off = 6476;
 //in dollars
 $benefits = "this is a string now"; // You just changed the value of $benefits from
 a float number to a string!
 ?>

 My Base Salary might be: <?php echo $base_salary; ?>
 My Bonus might be: <?php echo $bonus; ?>
 My Benefits might be: <?php echo $benefits; ?>
 My Time Off might be worth: <?php echo $time_off; ?>

Click Preview. Those variables should show up now.

1. PHP is part of the LAMP stack.
My Base Salary might be: 158470
My Bonus might be: 25815.25
My Benef its might be: To be determined
My Time Off might be worth: 6476

There they are. Actually, instead o f displaying themselves, our variables displayed the values they were ho lding.

By the way, they're not just sneaky; they're picky too. Turns out, variable names may consist o f only le t t ers,
numbers, and t he undersco re(_) charact er. Not just that, the first character o f the variable name CANNOT be a
number.

Here's a list o f valid and invalid variable names:

VALID variable names:

$_var
$heres_a_name
$t 12345
$x

INVALID variable names:

$1_var
$here 's-a-name

$t +12345
$x?

Modifying Variables and Values with Operators
Variables are not useful unless they've been modified. Operat o rs can be used to modify variables and their values.
Operators are fairly simple to use, in fact, you've already learned one: the assignment operator, represented by the
equal sign (=). The assignment operator is a quick, easy, and intuitive way to instruct a variable to ho ld a certain value.

But what if we want to change a variable's value?

Type the fo llowing into CodeRunner:

<ol style="font-size:16px;">
 PHP is part of the LAMP stack.
 <?php
 $lamp_l = "Linux";
 $lamp_a = "Apache";
 $lamp_m = "MySQL";
 $lamp_p = "PHP";
 ?>
 <?php
 /* Here are some imaginary numbers for a possible salary package for the skills we'
re learning: */
 $base_salary = 158470;
 $bonus = 25815.25;
 $benefits = 0.2;
 //percentage of total
 $time_off = 6476;
 //in dollars
 $benefits = "this is a string now"; // You just changed the value of $benefits from
 a float number to a string!
 ?>

 My Base Salary might be: <?php echo $base_salary; ?>
 My Bonus might be: <?php echo $bonus; ?>
 My Benefits might be: <?php echo $benefits; ?>
 My Time Off might be worth: <?php echo $time_off; ?>
 My Base Salary plus Bonus would total: <?php echo $base_salary + $bonus; ?> </l
i>

Preview this code. We added the values o f the variable's $base_salary and $bonus. Sweet.

1. PHP is part of the LAMP stack.
My Base Salary might be: 158470
My Bonus might be: 25815.25
My Benef its might be: To be determined
My Time Off might be worth: 6476
My Base Salary plus Bonus would total: 184285.25

The plus sign (+) is also an o perat o r. More specifically, a binary o perat o r, since it takes two variables or values (in
this case, called argument s), performs the addition operation on them, and returns the result - just like those shy
variables do. In this case, we displayed the result through the "echo" statement.

Below is a list o f some binary operators, and some examples o f them in action.

Assuming $i = 12 and $ j = 5 t hen...

Operat o r Name Usage Result

= assign $i = $j 5

+ add $i + $j 17

- subtract $i - $j 7

* multiply $i * $j 60

/ divide $i / $j 2.4

% mod (remainder o f division) $i % $j 2

Play around with these in your program and see what you get. Seriously, practice! Try applying different operators to
the example you've been working on in this lesson, and echo out the results.

The operations (except fo r addition) need to be executed in the order they appear, from left to right, to work properly.

By the way, the operators above only operate on integers and floating po int number values. There are different
operators that work on strings. Most specifically, the co ncat enat io n operator. Here is an example using
concatenation. Notice the period in front o f $lamp_l:

Type the fo llowing into CodeRunner:

<ol style="font-size:16px;">
 PHP is part of the LAMP stack.
 <?php
 $lamp_l = "Linux";
 $lamp_a = "Apache";
 $lamp_m = "MySQL";
 $lamp_p = "PHP";
 echo "
The stack begins with " . $lamp_l;
 ?>
 <?php
 /* Here are some imaginary numbers for a possible salary package for the skills we'
re learning: */
 $base_salary = 158470;
 $bonus = 25815.25;
 $benefits = 0.2;
 //percentage of total
 $time_off = 6476;
 //in dollars
 $benefits = "this is a string now"; // You just changed the value of $benefits from
 a float number to a string!
 ?>

 My Base Salary might be: <?php echo $base_salary; ?>
 My Bonus might be: <?php echo $bonus; ?>
 My Benefits might be: <?php echo $benefits; ?>
 My Time Off might be worth: <?php echo $time_off; ?>
 My Base Salary plus Bonus would total: <?php echo $base_salary + $bonus; ?> </
li>

Preview the code and see what happens. After you Preview you should see the fo llowing sentence on your page:

T he st ack begins wit h Linux.

Let's break it down. How did this:

echo "T he st ack begins wit h " . $ lamp_l;

become this?:

T he st ack begins wit h Linux.

Well, the first part in quotation marks is a string and the $lamp_l is a variable ho lding the string "Linux". To "add" them
together, we use a period . which is the concatenation operator. Did you understand that? If no t look again...

echo "T he st ack begins wit h " .$ lamp_l;

When used properly in PHP, suddenly that lowly punctuation mark, the period (.), becomes a powerful concatenation
too l. Yes, the concatenation operator (.) is yet another binary o perat o r in PHP, and an extremely useful one at that.

But the most useful characteristic o f these operators is that they can be nest ed. To nest operators essentially means
we can use them together.

Type the fo llowing blue code (notice the periods in red) into CodeRunner:

<ol style="font-size:16px;">
 PHP is part of the LAMP stack.
 <?php
 $lamp_l = "Linux";
 $lamp_a = "Apache";
 $lamp_m = "MySQL";
 $lamp_p = "PHP";
 echo "
The stack begins with " . $lamp_l . " and goes on to include " . $lamp_
a . ", and " . $lamp_p . "!
";
 ?>
 <?php
 /* Here are some imaginary numbers for a possible salary package for the skills we'
re learning: */
 $base_salary = 158470;
 $bonus = 25815.25;
 $benefits = 0.2;
 //percentage of total
 $time_off = 6476;
 //in dollars
 $benefits = "This is a string now."; // You just changed the value of $benefits fro
m a float number to a string!
 $total = $base_salary + $bonus + $time_off;
 $total_compensation = $total + ($total * 0.2); // Adding in benefits
 ?>

 My Base Salary might be: <?php echo $base_salary; ?>
 My Bonus might be: <?php echo $bonus; ?>
 My Benefits might be: <?php echo $benefits; ?>
 My Time Off might be worth: <?php echo $time_off; ?>
 My Base Salary plus Bonus would total: <?php echo $base_salary + $bonus; ?> </
li>
 My total compensation would be <?php echo $total . " without benefits, and " .
 $total_compensation . " with benefits."; ?>

In the code above there is operator nesting happening all over the place. Preview your file. You should get something
like this:

1. PHP is part of the LAMP stack.
The stack begins with Linux, and goes on to include Apache, MySQL, and PHP!

My Base Salary might be: 158470
My Bonus might be: 25815.25
My Benef its might be: To be determined
My Time Off might be worth: 6476
My Base Salary plus Bonus would total: 184285.25
Your total compensat ion would be 190761.25 without benef its, and 228913.5 with
benef its.

It appears that operator nesting worked just fine. That's not to say that our binary operators started taking on more
than two arguments. Instead, we've executed a succession o f binary operations, with the one operation taking the
results o f the last operation into consideration.

Here are a couple more things to consider:

Why do you suppose the "concat" operator (.) had no problem mixing strings, floats, and integers?
Were the parentheses (()) necessary in the $to tal_compensation line?
What ro le do you think the parentheses play?

Finally, here are some useful PHP "shortcut" operators. These operators reduce the need for nesting to execute some
common tasks and they are really handy. Can you figure out which operators are unary o perat o rs? (Hint: unary
operators need only one argument.)

Play around with these and see what you get:

Operat o r Equivalent

$i += $j $i = $i + $j

$i -= $j $i = $i - $j

$i *= $j $i = $i * $j

$i /= $j $i = $i / $j

$i++ $i = $i + 1

$i-- $i = $i - 1

$i .= $j $i = $i . $j

Superglobals
PHP has a set o f predefined variables to make our lives easier. Superglobals can be accessed by classes, functions,
or files at any time without having to do anything special! Very nice. So, what are these Superglobals?

Before we delve too deeply, let's get a small taste o f what's to come. After all, we can't simply give out all the secrets in
the beginning. There wouldn't be anything to look forward to !

$GLOBALS

1. References all variables that are in the global scope.
2. Associative array.
3. Variable names are keys o f $GLOBALS array.

CODE TO TYPE: $GLOBALS example

<?php
 function testScope() {
 echo "The variable in the main code doesn't extend to within the function: $sc
ope
";

 //assign a value to the variable named $scope that IS within function scope
 $scope = "WITHIN FUNCTION";
 echo "The local scope within the function: $scope
";

 //the superglobal DOES extend within the function
 echo "The global scope: {$GLOBALS['foo']}
";
 }

 //define $scope in the main code
 $scope = "MAIN CODE";
 echo "The local scope in the main code body: $scope
";

 //define a global value (
 $GLOBALS['foo'] = "SUPERGLOBAL";
 echo "The value in the superglobal is {$GLOBALS['foo']}
";

 //now run function, which has separate scope and $scope variable
 testScope();

 //show that main code's $scope is unaffected
 echo "The local scope in the main code body: $scope
";
?>

$_SERVER:

1. Array containing information to Headers, Paths, and Script locations.
2. Entries generated by web server.

CODE TO TYPE: $_SERVER example

<?php
echo $_SERVER['SERVER_NAME'];
?>

$_GET

1. Associative array.
2. Populated by URL parameters.

CODE TO TYPE: $_GET example

<form action="" method="get">
Enter your name: <input type="text" name="myname" placeholder="Tim O'Reilly"/>
<input type="submit" />
</form>
<?php
 echo "Your name is: " . htmlspecialchars($_GET["myname"]);
?>

$_POST

1. Associative array.
2. Array is passed via HTTP POST method.

CODE TO TYPE: $_POST example

<form action="" method="post">
Enter the next phrase: <input type="text" name="next_phrase" size="50" placehold
er="he played knick-knack on my door."/>
<input type="submit" />
</form>
<?php
 echo "This old man, he played four, " . htmlspecialchars($_POST["next_phrase"])
;
?>

Note This is not an exhaustive list o f PHP's Superglobals; however, click here for a full list with examples,
definitions, and a peek o f what's to come!

Phew! We've covered a lo t o f ground. Don't fo rget to Save your work, and hand in the assignments from your syllabus. See you
at the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://php.net/manual/en/language.variables.superglobals.php
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Decisions

In the last lesson we learned that storing values in variables and manipulating them with operators are among the most
important too ls we have for programming in PHP. Now let's talk about automating repetitive tasks and the decisions you'll
make based on the values present in your programs.

Comparison Operators and Conditions
We make comparisons everyday. When we shop, we look at prices o f similar items to determine which deals are best.
When we take a trip, we compare alternative routes to decide which will be most expedient. Well, it turns out that we can
do comparisons in PHP and o ther computer languages as well. Let's look at this process using a simple example.
Let's try a comparison o f Capt ain Crunch breakfast cereal to Fro st ed Flakes breakfast cereal.

Suppose Captain Crunch is 4 do llars a box, while Frosted Flakes is 5 do llars. We can use PHP to figure out which
price is greater. (We realize you can determine this fairly easily without PHP, but let's go ahead and work the example
anyway so we can see how PHP works.)

Add the fo llowing BLUE and GREEN code to your file in CodeRunner:

<?php
 $captain_crunch = 4;
 $frosted_flakes = 5;
?>
Does Captain Crunch cost less than Frosted Flakes? <?php echo ($captain_crunch < $frost
ed_flakes); ?>

Or, is Captain Crunch priced greater than Frosted Flakes? <?php echo ($captain_crunch >
 $frosted_flakes); ?>

Preview that. What was returned from the echo command here?

In the the last lesson we learned to modify variables using some of the standard operators: add, subtract, concatenate,
and o thers. The co mpariso n o perat o rs we're using now compare two variables, producing TRUE or FALSE results.

For instance, the program above compares two integers to determine if one is larger than the o ther. ("<" is a symbol
that means "less than," while ">" means "greater than").

This statement is TRUE:

4 < 5

We all know that 4 is less than 5.

This statement is FALSE:

4 > 5

So how did your program answer the question it was asked about Captain Crunch and Frosted Flakes?

Here's what you saw:

Does Captain Crunch cost less than Frosted Flakes? 1

Or, is Captain Crunch priced greater than Frosted Flakes?

Obviously, in our example, Captain Crunch is less (expensive) than Frosted Flakes, but what's with the number one (1)
at the end there? Was that a typo?

No, that wasn't a typo. Turns out, this is how PHP interprets the Bo o lean result "TRUE." (Boo lean, by the way, is just a
fancy programming word referring to the results o f "true or false" inquiries.) Similarly, instead o f returning "FALSE" or
"no" when asked if Captain Crunch is greater than Frosted Flakes, your program returned the NULL character. "Null" is
computer-speak for "nothing." When things are false, nothing gets returned, so nothing is printed.

Here's a table o f values that PHP can interpret as TRUE or FALSE:

FALSE T RUE No t es

0 (zero) any non-zero number non-zero examples: 1, -1, 0 .5

false true no quotes ("), o therwise it's just a string

NULL, null, '', o r "" any non-null string The space (" ") character is NOT the same as the null ("") character

Here's a list o f comparison operators you can experiment with in your program:

Operat o r Name Usage Result

== Equal $a == $b TRUE if $a and $b are equal.

=== Identical $a === $b TRUE if $a and $b are equal AND if they are o f the same
type (ie $a and $b are both integers).

!=
<> Not equal $a != $b

$a <> $b TRUE if $a and $b are not equal.

!== Not identical $a !== $b TRUE if $a is not equal to $b OR if $a and $b are not o f
the same type.

< Less than $a < $b TRUE if $a is less than $b.

> Greater than $a > $b TRUE if $a is greater than $b.

<= Less than or equal to $a <= $b TRUE if $a is less than OR equal to $b.

>= Greater than or equal to $a >= $b TRUE if $a is greater than OR equal to $b.

Note
In PHP we use two equal signs (==) to test fo r equality. (When you use "==" you're essentially asking:
Are t hese values equal?). Two equal signs, like $a == $b, compare $a to $b (in English it would read
"is $a equal to $b?"), whereas one equal sign $a = $b assigns $b to $a (in English it would read "set $a
is equal to $b").

IF and ELSE Control Structure
You may not know it, but you actually already understand if and else contro l structures. You use them everyday when
you decide things like " I' ll buy Capt ain Crunch if it 's less expensive t han Fro st ed Flakes, o r e lse I' ll buy
Fro st ed Flakes. You've set conditions and also decided on an alternative course o f action should those conditions
fail to be met. In a program, this is called a contro l structure.

In PHP, you would write the sentence above like this:

Type the fo llowing into a new file in CodeRunner:

<?php $Captain_Crunch = 4; $Frosted_Flakes = 5; if ($Captain_Crunch
 < $Frosted_Flakes) { echo "I'll buy Captain Crunch"; }
 else { echo "I'll buy Frosted Flakes"; } ?>

Preview the code above. Which cereal does PHP instruct you to buy? Try changing the numbers assigned to
$Captain_Crunch and $Frosted_Flakes to see what happens.

if statements have a specific fo rm.

OBSERVE:

if (expression){
 statement(s) executed if expression is TRUE } else {
 (optional) statement(s) executed if expression IS FALSE
 }

Again, this if statement is also referred to as a co nt ro l st at ement . PHP first evaluates the expressio n to see if it is
true or false. If the expressio n is true, then the statements in blue are executed. If no t, then the statements in BLUE
are not executed, but the green ones are.

Logical Operators
Questions can be more complicated than statements. For instance, if Captain Crunch is more (expensive) than
Frosted Flakes, but Fruit Loops are less (expensive) than Frosted Flakes, we might want to choose Fruit Loops. The
fo llowing code can handle these kinds o f complications:

Add the co lored code below into your document in CodeRunner:

<?php $Captain_Crunch = 5; $Frosted_Flakes = 4;
 $Fruit_Loops = 3;
 if ($Captain_Crunch < $Frosted_Flakes) {
 echo "I'll buy Captain Crunch";
 } else if ($Captain_Crunch > $Frosted_Flakes && $Frosted_Flakes > $Fruit_Loops) {
 echo "I'll buy Fruit Loops.";
 } else { echo "I'll buy Frosted Flakes.";
 }
?>

Preview this code. Which cereal does PHP recommend that you buy? Try changing the numbers representing the
prices and observe the results.

In this example, we've added a couple o f things for your consideration. First we added a lo gical o perat o r. We used
&& which simply means AND. The o ther addition was the else if . We can have as many o f those within an if
statement as we need.

So now the line reads:

OBSERVE:

else if ($Captain_Crunch > $Frosted_Flakes && $Frosted_Flakes > $Fruit_Loops) {
 echo "I'll buy Fruit Loops.";

In English, the line reads:

OBSERVE:

"Or else if Captain Crunch is greater than Frosted Flakes,
AND
Frosted Flakes is greater than Froot Loops, then I'll buy Fruit Loops.

Notice that when Captain Crunch is 6 do llars and Frosted Flakes is 5 do llars and Fruit Loops is 4 do llars, t hen
$Capt ain_Crunch > $Fro st ed_Flakes is T RUE, and that $Fro st ed_Flakes > $Fruit _Lo o ps is T RUE. So the
whole thing is TRUE and so you'll buy Fruit Loops!

Here are some rules to remember about logical operators:

(T RUE AND T RUE) is T RUE
(T RUE AND FALSE) is FALSE
(T RUE OR FALSE) is T RUE
(FALSE OR FALSE) is FALSE

Like comparison operators, the logical operator performs a comparison on two arguments, and returns a TRUE or
FALSE (1 or null) answer. However, the logical operator compares things that are already TRUE or FALSE.

Below is a list o f logical operators.

Operat o r Name Usage Result

AND AND $a AND $b TRUE if $a and $b are TRUE.

&& AND $a && $b TRUE if $a and $b are TRUE.

OR
|| OR $a OR $b

$a || $b TRUE if $a or $b is TRUE.

XOR Exclusive OR $a XOR $b TRUE if $a OR $b is TRUE, but not both.

Look again at this condition:

($Captain_Crunch >= 3 && $Frosted_Flakes < 10)

Remember that nested operators perform in a certain order, depending on certain rules? There are rules here too.
Specifically, the comparison operators are evaluated before the logical evaluator. This way, the logical evaluator only
needs to look at the TRUE or FALSE results, and act accordingly.

Like this:

 (($Captain_Crunch >= 3) &&
($Frosted_Flakes < 10)) ((TRUE) &&
(TRUE)) (TRUE)

Operat o r nest ing is really useful. And fortunately, you can do it with logical operators too.

Type the fo llowing into CodeRunner:

<?php
 $Captain_Crunch = 5;
 $Frosted_Flakes = 4;
 $Fruit_Loops = 5;
 $Oatmeal = 2;
 if ($Captain_Crunch < $Frosted_Flakes) {
 echo "I'll buy Captain Crunch";
 } else if ($Captain_Crunch > $Frosted_Flakes && $Frosted_Flakes > $Fruit_Loops) {
 echo "I'll buy Fruit Loops.";
 } else if ($Captain_Crunch > 4 && $Fruit_Loops > 4 && $Oatmeal < 4) {
 echo "I'll get some Oatmeal.";
 }
 ?>

Play with this one for a while—try entering different values for the different cereals. Be sure to Preview often to see what
happens.

NOT ICE: Before you move on, Save the PHP file you've been working on as co mpare.php.

A Brief Preview of Forms

Before we continue on with contro l structures, let's make these examples a little more interesting by getting
your PHP program to take input from a user on the web. We're go ing to make a form that will help us
understand these contro l structures better. This is a brief introduction. We'll cover fo rms in much more detail
later in the course.

So far in this lesson, we've been changing the values in the variables $Capt ain_Crunch,
$Fro st ed_Flakes, $Fruit _Lo o ps, and $Oat meal by hand. Typically though, contro l structures evaluate
changes made to variables and then react to those changes. If the user changes an input, we can account fo r
all the possibilities through contro l structures.

To make our program more interactive, we're go ing to make a web page with a few input fo rms we'll use to
submit values to our PHP program. Then we're go ing to take those inputs and assign them to the variables
listed above.

Let's make an HTML form.

Make sure you're in HTML and type the fo llowing into CodeRunner:

<body>
<h3>Choosing your Cereal</h3>
<form method="GET" action="compare.php"> Enter the price of Captain Crunch:
 <input type="text" size="25" name="crunch_price" value="" />

 Enter the price of Fruit Loops: <input type="text" size="25"
 name="loops_price" value="" />

 Cash in my wallet: <select name="cash_money">
<option value="">How much cash?</option>
<option value="1">$1.00</option>
<option value="2">$2.00</option>
<option value="3">$3.00</option>
<option value="4">$4.00</option>
<option value="5">$5.00</option>
<option value="10">$10.00</option>
</select>
<input type="submit" value="SUBMIT" />
</form>
</body>

Now Preview this in HTML. If you select an item and click submit, it won't do anything. You should see a page
that looks like this:

Choosing your cereal

Enter the price of Captain Crunch:
Enter the price of Fruit Loops:

Cash in my wallet : How much cash do you have? SUBMIT

Save this page as userinput .ht ml, o r anything you like, so long as you can remember the name.

Now we've made a web page that will take input from a web user, and then send that input to the PHP program
that we'll use to process it. Now we just need to make our PHP program retrieve the input. To do this, we have
to use something called a superglo bal array. Now that's a mouthful! We'll actually study superglobals in
detail in a later lesson. For now let's just try it!

Switch back to PHP with the co mpare.php PHP program we've been using, and make the fo llowing
changes.

Type the changes in BLUE into CodeRunner:

<?php
 $Captain_Crunch = $_GET["crunch_price"];
 $Frosted_Flakes = 4;
 $Fruit_Loops = $_GET["loops_price"];
 $Oatmeal = 2;
 $my_cash = $_GET["cash_money"];
 $total = $Captain_Crunch + $Frosted_Flakes;
 if ($total < $my_cash) {
 echo "I'll buy both Captain Crunch and Frosted Flakes!";
 } else if ($Captain_Crunch < $my_cash) {
 echo "I'll buy Captain Crunch.";
 } else if ($Captain_Crunch > $my_cash && $Fruit_Loops < $my_cash){
 echo "I'll buy some Fruit Loops.";
 } else {
 echo "Forget it, I'm going home.";
 }
?>

Now Save this PHP program as co mpare.php, then go back to your userinput .ht ml file in HTML. Preview

it. Enter different prices for the two cereals, select the amount o f cash you have in your wallet, then click
submit. Now your program should change according to the input you submitted in the form. Cool, huh?

We're just getting started with co nt ro l st ruct ures, so be sure to save your work and hand in your assignments. See you in the
next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Multiple Control Structures and Loops

Let's continue on from the last lesson. Make sure you've opened userinput .ht ml in HT ML, and co mpare.php in PHP .
Ready? Let's go!

Multiple Control Structures
In the last lesson we introduced the else if statement, which allows us to work with multiple conditions.

Check out this else if statement:

<?
 if ($total < $my_cash) {
 echo "I'll buy both Captain Crunch and Frosted Flakes!";
 }
 else if ($Captain_Crunch < $my_cash) {
 echo "I'll buy Captain Crunch.";
 }
 else if ($Captain_Crunch > $my_cash && $Fruit_Loops < $my_cash){
 echo "I'll get some Fruit Loops.";
 }
 else {
 echo "Forget it, I'm going home.";
 }

?>

When the first if statement fails, PHP checks the else if statement before go ing on to else . As long as you begin with
an if and end with an else , (if you have a default action), you can add any number o f else if statements in the middle.
This way we can check and react to a lo t o f conditions. Let's add some conditions to the example we worked on last
lesson.

Type the code in blue into your PHP program in CodeRunner:

<?

 $Captain_Crunch = 5;
 $Frosted_Flakes = 4;
 $Fruit_Loops = 3;
 $Oatmeal = 2;
 $my_cash = $_GET["cash_money"];

 $total = $Captain_Crunch + $Frosted_Flakes;

 if ($my_cash == 10) {
 echo "I'll buy both Captain Crunch and Frosted Flakes!";
 }
 else if ($my_cash == 5){
 echo "I'll buy Captain Crunch.";
 }
 else if ($my_cash == 4){
 echo "I'll buy Frosted Flakes.";
 }
 else if ($my_cash == 3){
 echo "I'll buy Fruit Loops.";
 }
 else if ($my_cash == 2){
 echo "I'll buy Oatmeal.";
 }
 else {
 echo "Forget it, I'm going home.";
 }

?>

Save this code using the filename compare.php, and open your userinput .ht ml file in HTML. Try entering some
numbers for the amount o f money you have and Preview it (the o ther variables are set in the program, so the input fo r
those fields won't matter in this example).

Even though the above code works just fine, the procedure could be streamlined by using a swit ch statement. The
switch contro l structure is similar to the if contro l structure, but it's especially useful when you have one variable with
many possible values. The switch contro l structure is a more efficient means o f accomplishing the same task. It's up to
you decide which contro l structure you like better.

This is how we'd change our code into a switch statement:

 switch($my_cash) {
 case "10":
 echo "I'll buy both Captain Crunch and Frosted Flakes.";
 break;
 case "5":
 echo "I'll buy Captain Crunch.";
 break;
 case "4":
 echo "I'll buy Frosted Flakes.";
 break;
 case "3":
 echo "I'll buy Fruit Loops.";
 break;
 case "2":
 echo "I'll buy Oatmeal.";
 break;
 default:
 echo "Forget it, I'm going home.";
 }

Give it a try. Save the o ld file as new_file.php (don't fo rget to make a new HTML file as well), then replace the block o f
code that contains the if statements with the switch statements above. Use whichever method you prefer, it's your call.

And o f course we want you to practice! Especially since we're go ing to assign this task as an objective later.

Before we go on, experiment and find answers to these questions:

 What happens when you nest comparison operators?
 Would (null == 0) be TRUE or FALSE?
 How about (null === 0)?
 In an If statement, do you have to have parentheses (()) around the condition?

 What about brackets ({})?
Hint: Try this with one action statement AND with two.

 Can you put the whole if control structure in one line?
 Do you always need to have an else statement?
 When nesting logical operators, do you need parentheses?
 What happens when you remove break; statements?

WHILE and FOR Loops
A lo o p is a repetitive task that goes on while something is true or for some number o f steps. That's why they are
called "while" and "for" loops.

A while lo o p has the fo llowing structure:

while (something is t rue) { do so me st uf f } ;

As soon as that something is false, the while loop stops.

Whereas a f o r lo o p has the fo llowing structure:

f o r (so me number o f st eps) { do so me st uf f } ;

Let's look at an example. Type this into a new PHP file in CodeRunner:

<?

 echo "Hide and go seek, I'm counting to 25:
";

 $counts = 1;
 while ($counts <= 25) {
 echo $counts." Mississippi...
";
 $counts++;
 }

 echo "Ready or not, here I come!
";

?>

In case you didn't play hide-and-seek in your childhood, this is how you'd count out loud while giving the o ther kids a
chance to hide. Such fun!

We have introduced a new form of contro l structure - the WHILE lo o p. And like with any contro l structure, the WHILE
loop does something in response to a TRUE conditional statement. In this case, however, the loop continues to

repeat the action until the conditional statement is FALSE.

All lo o ps have f o ur essent ial part s:

1. The init ial value st at ement , in this case $co unt s = 1;
2. The co ndit io nal st at ement , in this case $co unt s <= 25
3. The act io n st at ement (s) , in this case echo $co unt s." Mississippi...
";
4. The increment st at ement , in this case $co unt s++; (Remember this unary o perat o r?)

In order fo r a loop to work, it has to have a starting po int, an ending po int, and something to do in between. What would
happen if any o f the four elements in our example were missing? Try messing with them, and you'll find out. (Go
ahead, try. I'll wait.)

Note
Loops fo llow the same scheme as any contro l structure, in that you can nest all kinds o f conditional
statements and actions within them, including more loops. This can be lo ts o f fun -- especially fo r duping
your buddies into thinking the computer screen is possessed by gremlins!

Our counting loop example above is a really common loop--so common, in fact, that almost all programming
languages have developed an alternate type o f loop that can be used as a shortcut: the FOR lo o p.

The FOR loop structure looks like this:

for ($counts = 1; $counts <= 25; $counts++) {
 echo $counts." Mississippi...
";
}

Try replacing your WHILE loop with this FOR loop, then Preview the code. You should see the exact same result. In
fact, the FOR loop has exactly the same four elements as the WHILE loop. The only difference is the order o f the
elements in the syntax. Well, that, and if you forget the increment st at ement in this one, PHP will yell at you. Sounds
mean, but sometimes we need a little kick to keep from inadvertently causing an inf init e lo o p. Yuck.

You may think that learning both WHILE loops and FOR loops in PHP is needless and redundant, and it's true that
most o f the time they are interchangeable. However, as your scripts gain more complexity, you'll find that some tasks
are a perfect fit fo r using FOR, while using WHILE is best fo r o thers.

You've come really far! Now you can program the majority o f what you'll need in PHP. Congratulations! You are one o f the best
PHP programmers in the world!

...Circa 1995, that is. To create cutting-edge web software for this century, we have a ways to go. Take heart—you've
accomplished a lo t already. Save your work, and don't fo rget the assignments. See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Functions

A f unct io n acts like a small program within your larger program. You invoke a function, send it information, and get something
back. A great way to learn to use functions, is to create one and use it. Let's go!

Creating Code Reusability with Functions
Let's create a new program so we can practice using functions. Our new program will take user input just like our
previous programs, only this time we'll inquire about the user's state o f mind and recommend a mantra for them to
repeat.

Make sure you're in HTML syntax and type the fo llowing into CodeRunner:

<body>

 <h3>OST's Mantra generator</h3>

 <form method="GET" action="mantra.php">

 My current mood:
 <select name="my_mood">
 <option value="">Please choose...</option>
 <option value="happy">I'm happy.</option>
 <option value="sad">I'm sad.</option>
 <option value="angry">I'm angry.</option>
 <option value="indifferent">I'm indifferent.</option>
 </select>

 <input type="submit" value="SUBMIT" />

 </form>

 </body>

Save this HTML file as mo o dinput .ht ml

In PHP Mode, type the fo llowing code highlighted in BLUE into CodeRunner:

<?
$my_mood = $_GET["my_mood"];

 if ($my_mood == "happy") {

 echo "Repeat the following:

";

 for ($chant = 1; $chant <= 10; $chant++) {
 echo " OM... ";
 }

 }
 else if ($my_mood == "sad") {

 echo "Repeat the following:

";

 for ($chant = 1; $chant <= 10; $chant++) {
 echo " okay... ";
 }

 }
 else if ($my_mood == "angry") {

 echo "Repeat the following:

";

 for ($chant = 1; $chant <= 10; $chant++) {
 echo " Mississippi... ";
 }

 }
 else if ($my_mood == "indifferent") {

 echo "Repeat the following:

";

 for ($chant = 1; $chant <= 10; $chant++) {
 echo " Wake up... ";
 }

 }
 else {

 echo "Repeat the following:

";

 for ($chant = 1; $chant <= 10; $chant++) {
 echo " Try harder... ";
 }

 }

?>

Save this code as mant ra.php and, once again, open up the HTML file moodinput.html.

Preview the HTML. Enter different values for your mood (after all, we're all pretty moody).

We have used pretty much the same PHP code in several places. When you have the same code or similar code in
lo ts o f different places, use a f unct io n. It will make your program more readable and save time. Say we decided to
recommend chanting our mantra 20 times instead o f 10. Unless we used a function, we'd have to change the code by
hand in each o f the "for" loops. Even for a simple code like ours, that would be truly annoying. You can imagine trying
to do this with long and complicated code--it could get downright ugly. Fortunately, f unct io ns enable us to avo id
such unpleasantness. We can create a function to execute a particular task each time we enter the name of the function
into our program. This is referred to as "calling" a function. Change your program so it looks like the stuff below—be
sure to remove the "for" loops within the "else if" statements.

Switch back to PHP and add the fo llowing code in BLUE into CodeRunner:

<?

function mantra($the_sound) {

 for ($chant = 1; $chant <= 10; $chant++) {
 echo $the_sound . "... ";
 }
}

$my_mood = $_GET["my_mood"];

 if ($my_mood == "happy") {

 mantra("OM");

 }
 else if ($my_mood == "sad") {

 mantra("okay");

 }
 else if ($my_mood == "angry") {

 mantra("mississippi");

 }
 else if ($my_mood == "indifferent") {

 mantra("Wake up");

 }
 else {

 mantra("Try harder");

 }
?>

Save this file as mant ra.php and then switch back to your mo o dinput .ht ml file. Try entering different moods. You
should get the same results as before, but this time you used functions.

Each time the mant ra("so met hing") function is encountered by PHP, it calls the function definition f unct io n
mant ra($t he_so und) . The variable ($t he_so und in this case) is set to whatever is in between the parentheses
when mantra("something") is encountered. For instance, mant ra("OM") is calling the f unct io n
mant ra($t he_so und) and setting $t he_so und = "OM" . This is known in functions as "setting a parameter." This
particular function takes one parameter: $the_sound. However, functions can take no parameters at all o r many
different parameters.

Much like a variable ho lds values, f unct io ns ho ld pro cesses (snippets o f code) that we want to reuse. So instead o f
having to add the same code over and over again, we can simply call the f unct io n. In this case, when mant ra() is
encountered, the code inside o f the brackets { and } in the definition f unct io n mant ra(){ } is executed. Functions will
only be executed when they are called. Try removing the calls to mantra(). You'll see that the function doesn't do
anything then.

Note
If the function you've created doesn't have any parameters, you still need to have the parentheses in
place, they just won't contain anything. Notice how no do llar signs ($) are used in the function name
mant ra, but instead we fo llow the name with parentheses(()). They need to be there, that's just the way it
is.

Congratulations—you've just worked through your first example o f co de reusabilit y!

Function and Variable Scopes

Sco pe refers to a variable's area o f influence. If a variable is defined inside o f a function, then its area o f influence is
only within that function. That means we can use that variable name again in another function--setting values to it in
one function won't affect the setting in another function. Let's try using a function to encapsulate those "if" statements in
our example from the last section. In the process, we can see how scope may affect the outcome of our program.

Revise your PHP program so it looks like this in CodeRunner:

<?

function mantra($the_sound) {

 for ($chant = 1; $chant <= 10; $chant++) {
 echo $the_sound . "... ";
 }

}

function Mood_Chant(){

 if ($my_mood == "happy") {

 mantra("OM");

 }
 else if ($my_mood == "sad") {

 mantra("okay");

 }
 else if ($my_mood == "angry") {

 mantra("mississippi");

 }
 else if ($my_mood == "indifferent") {

 mantra("Wake up");

 }
 else {

 mantra("Try harder");

 }

}

$my_mood = $_GET["my_mood"];

Mood_Chant();

?>

Save this as mant ra.php, then open your mo o dinput .ht ml file. Try altering ANY of the moods on the list. No matter
what you choose, this code will always return T ry Harder as the output.

So why is the program returning T ry Harder as a result, no matter what we select? Let's perform some diagnostic
tests to find out. We'll enter some echo statements to print out variable values in different parts o f our program. Then
we can use the information we get to determine the path our program is taking and the steps we need to take to correct
our problem. Let's try it.

Add some echo statements into CodeRunner:

<?
function mantra($the_sound) {

 for ($chant = 1; $chant <= 10; $chant++) {
 echo $the_sound . "... ";
 }

}

function Mood_Chant(){

echo "INSIDE the Mood_Chant function, your mood is ".$my_mood.".
";

 if ($my_mood == "happy") {

 mantra("OM");

 }
 else if ($my_mood == "sad") {

 mantra("okay");

 }
 else if ($my_mood == "angry") {

 mantra("mississippi");

 }
 else if ($my_mood == "indifferent") {

 mantra("Wake up");

 }
 else {

 mantra("Try harder");

 }

}

$my_mood = $_GET["my_mood"];

echo "OUTSIDE the Mood_Chant function, your mood is ".$my_mood.".
";

Mood_Chant();

 ?>

Once again, Save this as mant ra.php, then go back to your mo o dinput .ht ml page. Select angry from the drop
down list and submit it.

You should get something like this:

OUTSIDE the Mood_Chant funct ion, your mood is angry.
INSIDE the Mood_Chant funct ion, your mood is .
Try Harder...Try Harder...Try Harder...Try Harder...Try Harder...Try Harder...Try Harder...Try Harder...Try
Harder...Try Harder...

Look closely. What printed out? What didn't? The first result printed out OUT SIDE t he Mo o d_Chant f unct io n, yo ur
mo o d is angry. We asked PHP to print it with the statement echo "OUT SIDE t he Mo o d_Chant f unct io n, yo ur
mo o d is " .$my_mo o d." ." ;. So as expected, the variable $my_mood was defined as angry. However, the second
result printed INSIDE t he Mo o d_Chant f unct io n, yo ur mo o d is . Even though we asked PHP to print echo
"INSIDE t he Mo o d_Chant f unct io n, yo ur mo o d is " .$my_mo o d." ." ; , it didn't print a value for $my_mood.

" INSIDE t he Mo o d_Chant f unct io n, yo ur mo o d is " .$my_mo o d." ." ; , it didn't print a value for $my_mood.

In the above example, you would think the value o f $my_mo o d ("angry") would print both inside and outside o f the
function Mo o d_Chant () . But, once the function was called, the value $my_mo o d wasn't seen INSIDE of the
Mood_Chant() function at all. This is because the variable $my_mo o d is completely different depending on whether it
is located outside or inside o f the function. Although variables may share the same name, their location determines
their effect on the program. When a variable within a function is encapsulated, as if the function was its own program,
this is referred to in programming as the function's sco pe .

In the next section, we'll learn to set parameters so that scope doesn't prevent us from using functions to the fullest.

Note
PHP isn't as strict with scope as some other languages are. Since PHP isn't strongly typed, you're not
required to declare variables before you use them. Therefore, within a PHP function, a variable declared
within a loop will retain its value outside o f that loop. To see this concept at work, try using echo to
output $chant after the f o r lo o p is finished in mant ra() .)

Using Functions with Parameters and Return Values
As interesting as scope can be, it doesn't help lighten your work load. What's the use o f reusing your code in a
function, if you have to re-define $my_mo o d within the function? Worse, what if you want to have different values for
$my_mo o d anytime you use the function Mo o d_Chant ()? We could save ourselves a lo t o f work if we could feed
our function different values and get an output each time. We already did this in the first section above using
paramet ers.

Sneaking In with Parameters

Type the fo llowing into CodeRunner:

<?

function mantra($the_sound) {

 for ($chant = 1; $chant <= 10; $chant++) {
 echo $the_sound . "... ";
 }

}

function Mood_Chant($my_mood){

echo "INSIDE the Mood_Chant function, your mood is ".$my_mood.".
";

 if ($my_mood == "happy") {

 mantra("OM");

 }
 else if ($my_mood == "sad") {

 mantra("okay");

 }
 else if ($my_mood == "angry") {

 mantra("mississippi");

 }
 else if ($my_mood == "indifferent") {

 mantra("Wake up");

 }
 else {

 mantra("Try harder");

 }

}

$my_mood = $_GET["my_mood"];

echo "OUTSIDE the Mood_Chant function, your mood is ".$my_mood.".
";
Mood_Chant($my_mood);

 ?>

Save this as mant ra.php, open mo o dinput .ht ml, and select angry from the drop-down list. This time, you
should have gotten the results you expected.

Look at your function again:

function Mood_Chant($my_mood) {

//code that processes the value of $my_mood

}

.

.

.

//passing the value of $my_mood UP to the Mood_Chant function above
Mood_Chant($my_mood);

Passing a paramet er essentially drills through the wall o f your function's scope, making it a more useful
machine.

Whatever paramet er we call to Mo o d_Chant (paramet er); becomes the value for $my_mo o d. And you
don't even have to use the name $my_mo o d, since it's a completely different variable within the function and
outside the function. Try using this on your own.

Look at your function again:

function Mood_Chant($my_mood) {

//code that processes the value of $my_mood
}

.

.

.

//passing the value of $my_mood up to the Mood_Chant function above
Mood_Chant("happy");

The value o f $my_mo o d inside o f the function Mood_Chant($my_mood) is "happy" . It's like setting
$my_mood = "happy" INSIDE of the function.

Now that we've snuck in with parameters, let's sneak out with return values.

Sneaking out with Return Values

In the examples above, we saw that we can sneak into a function using parameters. We can also sneak out
using ret urn values. The best way to understand "return" is to use it. Let's get to it.

Type the fo llowing into CodeRunner:

<?

function mantra($the_sound) {

 for ($chant = 1; $chant <= 10; $chant++) {
 echo $the_sound . "... ";
 }

}

function Mood_Chant($my_mood){

 if ($my_mood == "happy") {

 mantra("OM");
 $after_chant = "
I feel serene now.";

 }
 else if ($my_mood == "sad") {

 mantra("okay");
 $after_chant = "
I feel better now.";

 }
 else if ($my_mood == "angry") {

 mantra("mississippi");
 $after_chant = "
I've calmed down now.";

 }
 else if ($my_mood == "indifferent") {

 mantra("Wake up");
 $after_chant = "
I'm awake now.";

 }
 else {

 mantra("Try harder");
 $after_chant = "
I'll try harder now.";

 }

 return $after_chant;
}

$my_mood = $_GET["my_mood"];

$after_chant_mood = Mood_Chant($my_mood);

echo $after_chant_mood;

?>

Save this as mant ra.php, open up mo o dinput .ht ml, and select anything you like from the drop down list.
Now you should get the chant and at the end you should have an "after-chant mood" expressed. All we did
here was add some statements into the variable $after_chant and then use ret urn $af t erchant at the end o f
the function. When we use return, we are setting a value in place o f the function.

But instead o f just letting a parameter sneak in, you've allowed a ret urn value to sneak out o f the function
scope. Suddenly, your function is an efficient factory, taking in raw ingredients (parameters) and spitting out a
refined product -- that is, it returned a value. Allowing a return value to sneak out o f the function scope is used
often in programming to return true or false values in functions that perform tests.

Multiple Parameters and Default Values

We practiced using parameters earlier in the lesson and now we can pass parameters to a function. Let's
change our function so that the end user can set how many times we chant our mantra.

Type the fo llowing code into your moodinput.html file in CodeRunner:

<body>

 <h3>OST's Mantra generator</h3>

 <form method="GET" action="mantra.php">

 My current mood:
 <select name="my_mood">
 <option value="">Please choose...</option>
 <option value="happy">I'm happy.</option>
 <option value="sad">I'm sad.</option>
 <option value="angry">I'm angry.</option>
 <option value="indifferent">I'm indifferent.</option>
 </select>

 Pick a number:
 <select name="my_number">
 <option value="2">Please choose...</option>
 <option value="10">10</option>
 <option value="20">20</option>
 <option value="30">30</option>
 <option value="40">40</option>
 </select>

 <input type="submit" value="SUBMIT" />

 </form>
</body>

Save this as mo o dinput .ht ml again. We've added the option o f selecting a number, so let's change our
program to accept this information and process it.

Type the fo llowing in your PHP file in CodeRunner:

<?

function mantra($the_sound,$the_number = 10) {

 for ($chant = 1; $chant <= $the_number; $chant++) {
 echo $the_sound . "... ";
 }

}

function Mood_Chant($my_mood, $chant_number = 10){

 if ($my_mood == "happy") {

 mantra("OM",$chant_number);
 $after_chant = "
I feel serene now.";

 }
 else if ($my_mood == "sad") {

 mantra("okay",$chant_number);
 $after_chant = "
I feel better now.";

 }
 else if ($my_mood == "angry") {

 mantra("mississippi",$chant_number);
 $after_chant = "
I've calmed down now.";

 }
 else if ($my_mood == "indifferent") {

 mantra("Wake up",$chant_number);
 $after_chant = "
I'm awake now.";

 }
 else {

 mantra("Try harder",$chant_number);
 $after_chant = "
I'll try harder now.";

 }

 return $after_chant;
}

$my_mood = $_GET["my_mood"];
$chant_number = $_GET["my_number"];

$after_chant_mood = Mood_Chant($my_mood, $chant_number);

echo $after_chant_mood;

?>

Save this as mant ra.php, open mo o dinput .ht ml, and Preview.

In this program we let the user select a number. Then inside o f the mood_chant function we call Mantra(first
parameter, second paramter) where the second parameter is the number the end user chose on the form in
the first place. Notice we changed the function Mantra() to accept two parameters.

By adding a def ault value to the parameter $t he_number, you made that parameter completely optional
when you call Mant ra. To see this in action, try changing the program so that one o f the calls to Mantra() has
only one parameter being set.

Note
You can have as many parameters and default values as you want in a function. But you have to
make sure that the default-valued parameters are at the end o f the parameter list. Any idea why?
Experiment to find out!

Be sure to save your work and hand in your assignments. See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Arrays

Have you ever used one o f those weekly pill containers? You know, the ones that keep your vitamins or medicine organized for
each day? Surely you've at least seen one:

This is an excellent representation o f this entire lesson—that box is just an array o f containers with objects in them. Let's get
started with a fresh file and take a breather from the monster we've created.

Creating an Array

Open a new PHP file and type this code into CodeRunner:

<?php

$names = array("scott","kendell","Trish","Tony","Mike","Debra","Curt");

echo "<pre>";
print_r($names);
echo "</pre>";

?>

Save and preview the file:

Array
(
 [0] => scott
 [1] => kendell
 [2] => Trish
 [3] => Tony
 [4] => Mike
 [5] => Debra
 [6] => Curt
)

You've just defined an array named names, by passing the seven names as parameters to the built- in PHP array()
construct. If you think in terms o f the pill box above—a huge, people-sized pill box—it would look like this:

Now, the great thing about arrays is that you can access and mess with any one o f the element s—names, pills,
whatever values are in the boxes—by using the array keys. Let's give Mike a call:

Type the fo llowing into CodeRunner:

<?php

$names = array("scott","kendell","Trish","Tony","Mike","Debra","Curt");

echo "Who is it? ...".$names[4]."
";

echo "<pre>";
print_r($names);
echo "</pre>";

?>

Preview this. Did you see Mike's name? All you did here is retrieve the value o f the array element at the 4th position,
or index. In this case, you used the index 4 as the key. For kicks, let's replace Mike:

Type the fo llowing into CodeRunner:

<?php

$names = array("scott","kendell","Trish","Tony","Mike","Debra","Curt");

echo $names[4];

$names[4] = "Josh";
echo "Who is it? ...".$names[4]."
";

echo "<pre>";
print_r($names);
echo "</pre>";

?>

See, this is why we love arrays. No scope to contend with, just a simple organization o f values that we can mess with
at will. So now the $names array looks like this:

Note
Notice the new, super-handy, built- in function called print _r, which prints out an array in a really nice,
readable format. With a little experimentation, you can figure out why we used the <pre> and </pre> tags,
too. You can find out more about this function at php.net.

Associative Arrays
If we wanted to represent the pill box in PHP, it would make sense to use the labels that already exist to mark each box
for our purposes as well. Here's one way to do it:

http://www.php.net/manual/en/function.print-r.php

Type the fo llowing into CodeRunner:

<?php

$weekly_pills = array("S" => "vitamin C",
 "M" => "Echinacea",
 "T" => "antibiotic",
 "W" => "calcium",
 "Th" => "zinc",
 "F" => "multivitamin",
 "Sa" => "alka seltzer");

echo "<pre>";
print_r($weekly_pills);
echo "</pre>";

?>

Save it as pills.php and preview:

Array
(
 [S] => vitamin C
 [M] => Echinacea
 [T] => antibiotic
 [W] => calcium
 [Th] => zinc
 [F] => multivitamin
 [Sa] => alka seltzer
)

You've just defined an associative array. By using the => operator, you've associated each array element value to its
own index, or key, so that you can access it more intuitively. In o ther words, an associative array is a way o f naming
each slo t o f the array. In this case, the slo ts are named S ,M, T , W, T h, F, and Sa, respectively. So now we can store
and access values in an array based on these names instead o f using indices. Experiment with this:

Type the fo llowing into CodeRunner:

<?php

$weekly_pills = array("S" => "vitamin C",
 "M" => "Echinacea",
 "T" => "antibiotic",
 "W" => "calcium",
 "Th" => "zinc",
 "F" => "multivitamin",
 "Sa" => "alka seltzer");

echo "<pre>";
print_r($weekly_pills);
echo "</pre>";

//assign a new pill to Thursday
$weekly_pills["Th"] = 'aspirin';

//Does Thursday correspond to index 4? Let's see...
$weekly_pills[4] = 'garlic';

//Let's be lazy and see what happens...
$weekly_pills[] = 'glucose';

echo "<pre>";
print_r($weekly_pills);
echo "</pre>";

?>

Save and preview this:

Array
(
 [S] => vitamin C
 [M] => Echinacea
 [T] => antibiotic
 [W] => calcium
 [Th] => zinc
 [F] => multivitamin
 [Sa] => alka seltzer
)

Array
(
 [S] => vitamin C
 [M] => Echinacea
 [T] => antibiotic
 [W] => calcium
 [Th] => aspirin
 [F] => multivitamin
 [Sa] => alka seltzer
 [4] => garlic
 [5] => glucose
)

By the way, all arrays in PHP are associative. Every array value is assigned to a key index, regardless o f whether we
defined it. When you don't define a key index for an element value, PHP automatically assigns a default index to that
value for you. Specifically, it assigns the next increment after the highest integer index used. That's why 'glucose' was
assigned to the index 5—we'd already used 4 .

Type the fo llowing into CodeRunner:

<?php

$months_of_the_year = array(1 => "January", "February", 4 => "April", 3 => "March",
 "May", "June", "July", "August", "September", 12 => "Decemb
er",
 10 => "October", 11 => "November");

echo "<pre>";
print_r($months_of_the_year);
echo "</pre>";

?>

Save it as mo nt hs.php and preview it. Play around with it. Become one with array elements and keys. Oh, and don't
fo rget to study your book or php.net fo r more fun examples.

Creating Multi-Dimensional Arrays
A multi-dimensional array is simply an array o f arrays. That is, we can put arrays in fo r the values o f an array which
would be a two-dimensional array. A three-dimensional array would be an array o f arrays o f arrays. Ah, nesting. One o f
PHP's little joys. Let's modify our pills.php to see how it works.

Type the fo llowing into CodeRunner:

<?php

$weekly_pills = array("S" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "M" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "T" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "W" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "Th" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "F" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "Sa" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"));

echo "<pre>";
print_r($weekly_pills);
echo "</pre>";

echo "What pill should I pop right now? ...".$weekly_pills["Th"]["6pm"];

?>

http://www.php.net/manual/en/function.array.php

Save and preview this code. Wow. That's a lo t o f pills! But it seems that there are enough people taking enough pills
that a container indeed exists that represents this matrix o f dosages:

Creating a multi-dimensional array is as simple as nesting the array() construct to your heart's content, to create useful
representations o f just about anything.

Traversing and Manipulating Arrays
Let's have some fun and send a shout-out to everyone in the $names array. Modify array.php as shown

We're feeling friendly. Type the fo llowing into CodeRunner:

<?php

$names = array("scott","kendell","Trish","Tony","Mike","Debra","Curt");

echo "There are ".count($names)." names in the \$names array.
";
for ($i = 0; $i < count($names); $i++) {
 echo "Dialing index ".$i."...";
 echo "Hey there, ".$names[$i]."!!
";
}

?>

Note Yet another excellent built- in PHP function is co unt () . We're sure you can guess what it does, but we still
encourage you to check it out at php.net.

Preview this code and feel the love:

There are 7 names in the $names array.
Dialing index 0...Hey there, scott !!
Dialing index 1...Hey there, kendell!!
Dialing index 2...Hey there, Trish!!
Dialing index 3...Hey there, Tony!!
Dialing index 4...Hey there, Mike!!
Dialing index 5...Hey there, Debra!!
Dialing index 6...Hey there, Curt !!

Just by being friendly, you've traversed an array. Traversing simply requires that you hopscotch through all the
elements o f your array and do something with each value. "For" and "while" loops are great fo r that, especially when
you use numerical indices.

Traversing Associative Arrays with list() and each()

http://www.php.net/manual/en/function.count.php

Here's one guarantee: you're go ing to use arrays a lot. You can create, access, traverse, and manipulate
arrays fairly easily IF you know exactly what is go ing into them, how many elements they have, and how deep
the nesting goes in every case. But most o f the time, you won't know all that. You'll need to work around any
gaps with some nifty programming or some great built- in PHP array functions, like co unt () .

For instance, how would you traverse the associative $weekly_pills array? Using numerical counters won't
help. But don't worry, you have options. Here's our recommended way to do it:

Type the fo llowing into CodeRunner:

<?php

$weekly_pills = array("Sunday" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "Monday" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "Tuesday" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "Wednesday" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "Thursday" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "Friday" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"),
 "Saturday" => array("8am" => "vitamin C",
 "1pm" => "antibiotic",
 "6pm" => "zinc",
 "11pm" => "alka seltzer"));

while (list($key, $value) = each($weekly_pills)) {
 echo "Here's what you should take on ".$key.":
";

 echo "<pre>";
 print_r($value);
 echo "</pre>";
}

?>

Save and preview it:

Here's what you should take on Sunday:
Array
(
 [8am] => vitamin C
 [1pm] => antibiotic
 [6pm] => zinc
 [11pm] => alka seltzer
)

How did you get all that output? Well, there are two built- in functions working together here.

Let's break it down:

while (list($key, $value) = each($weekly_pills)) {
 echo "Here's what you should take on ".$key.":
";
.
.
.
}

list () is not really considered a function, but a language construct, because it doesn't fo llow the normal
"Parameter in/Return value out" function rule. list () is simply a shortcut which, when used with the
assignment operator (=) and an array, assigns each value o f that array to the parameter variables within
list () .

In o ther words, this:

list($parameter1, $parameter2, $parameter3) = array("value1", "value2", "value3"
);

...is the same as this:

$parameter1 = "value1";
$parameter2 = "value2";
$parameter3 = "value3";

Now let's go on to each() , which may be even trickier than list () . Trickier, because it introduces an aspect o f
arrays that we haven't discussed until now: the array cursor.

Take a look at the graphical representation o f $names again:

Now, take your mouse cursor and point to each box, one by one, starting with the first entry. You've just
demonstrated the way an array cursor works: it points to array elements. The array cursor always begins by
po inting to an array's first element, and stays where it is until moved by a built- in PHP function.

Here's where each() comes in:

Type the fo llowing into CodeRunner:

<?
$test_array = array("key1" => "value1",
 "key2" => "value2",
 "key3" => "value3");

//start with the beginning
$new_array1 = each($test_array);

echo "<pre>";
print_r($new_array1);
echo "</pre>";

?>

Save it as each.php and preview it:

Array
(
 [1] => value1
 [value] => value1
 [0] => key1
 [key] => key1
)

As you may have guessed, each() takes an array as its parameter. But what you may not have guessed is
that it also has an array as its return value. Only the array returned is different from the array passed in.

each() uses the array cursor to access the element currently being po inted to by that cursor. This is called the
current element. In our above example, the current element is the first element o f $t est _array. After
accessing the element, each() creates a new array with four elements—using the key and value from the
current element o f the parameter array—and returns that array. In our example, we assigned that array to
$new_array1. Finally, each() increments the array cursor so it po ints to the next element in the array.

Why four elements in the return array? So that the new array can be accessed both numerically AND
associatively. The key o f the parameter array's current element becomes the value fo r two o f the new array's
elements, accessed by the keys 0 and "key" . The value o f the parameter array's current element becomes
the value fo r the o ther two elements o f the new array, accessed by the keys 1 and "value" .

Since list () can only deal with numerical keys (it ignores associative keys), the four-element return array is
especially handy.

Let's put it all together:

while (list($key, $value) = each($weekly_pills)) {
 echo "Here's what you should take on ".$key.":
";
.
.
.
}

In this example, the "while" loop is monitoring the cursor o f our $weekly_pills array. We can trust that the
loop won't be infinite because o f each() . The array cursor will eventually reach the end o f the array and po int
to null, but each time it loops, the current element's key (in this case, the day o f the week) would be assigned
to the variable $key. Similarly, the current element's value (in this case, another array containing that day's
pills) would be assigned to the variable $value .

Yikes! That's not just tricky, that's downright eye-crossing. When you do get the hang o f it though, this little
PHP concoction will serve you well, no t only with arrays, but with SQL commands and lo ts o f o ther
programming.

Note As an alternative to using list() and each() inside the condition o f a while loop, check out
foreach() loops at php.net.

More built-in functions
How do you know if an element exists in an array? What if you need distinct array elements? How about sorting and
merging? All these questions can be answered with built- in PHP functions. Like we said earlier, it would take ages to
go through them all, but we should definitely go over some of the major ones.

To cap o ff our intensive array workout, we leave you with a montage o f fun PHP functions. Play, experiment, and refer
back to your book or to php.net o ften. Think about how the functions work. Are array cursors used? What are the
parameters? What is the function returning?

Finally, think about how you would write your own PHP functions to perform the same tasks. Would you make the
same cho ices as the PHP fo lks?

http://php.net/manual/en/control-structures.foreach.php
http://php.net

Type the fo llowing into CodeRunner:

<?php

$scotts_phonebook = array("kendell" => "555-1234",
 "Trish" => "555-2345",
 "Tony" => "555-3456",
 "Mike" => "555-4567",
 "Debra" => "555-5678",
 "Curt" => "555-6789");

$kendells_phonebook = array("scott" => "555-7890",
 "Trish" => "555-2345",
 "Tony" => "555-3456",
 "Debra" => "555-5678",
 "Kate" => "555-8901");

//here's a phonebook combining both Scott's and Kendell's contacts, no duplicates

$combined_phonebook = array_unique(array_merge($scotts_phonebook, $kendells_phonebook))
;

echo "<pre> Combined Phonebook:";
print_r($combined_phonebook);
echo "</pre>";

//sort by name - why do you suppose we aren't assigning the return value to anything?

ksort($combined_phonebook);

echo "<pre>Sorted Phonebook:";
print_r($combined_phonebook);
echo "</pre>";

//here's a phonebook containing only mutual friends of Scott and Kendell

$mutual_friends = array_intersect($scotts_phonebook, $kendells_phonebook);

echo "<pre>Mutual Friends:";
print_r($mutual_friends);
echo "</pre>";

//in this custom function called "invite_friend," a phone number is
//called and that friend is invited to a party.

function invite_friend($phone_number, $name) {
 echo "Calling phone number $phone_number...";
 echo "Hello $name! You're invited to a party!
";
}

//Here's a REALLY tricky built-in function we can use to invite ALL friends to the part
y.
//Careful, this one has lots of rules regarding the second parameter.

array_walk($combined_phonebook, 'invite_friend');

//Finally, generate a random phone number and see if it's in the phonebook.

$random_phonenumber = "555-".strval(rand(1000,9999));

if (in_array($random_phonenumber, $combined_phonebook)) {
 echo "Phone number ".$random_phonenumber." is in the phonebook.";
}
else {

 echo "Phone number ".$random_phonenumber." is not in the phonebook.";
}

?>

Save it as pho nebo o ks.php and preview.

Were you able to figure them out? If no t, give yourself some time and don't stress—remember, these are functions
built by someone else to save time. If any built- in function doesn't suit your purpose, look for another one...o r just write
one yourself.

Don't fo rget to Save your work! And be sure to work on the assignments in your syllabus when you're done here. See
you at the next lesson...

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Strings

Welcome back. So, you already know that st rings are one type o f PHP variable . And you've been using strings throughout the
last five lessons with echo , the concat operator (.), and in all kinds o f functions and loops. You've got strings down, baby.

So why spend an entire lesson on the letters, numbers, and symbols that make up strings?

The truth is, we've only explored the tip o f the proverbial iceberg when it comes to strings. In fact, they are the cornerstones o f
many a web-based, database-driven application. Like piranha, you should never underestimate the feisty little critters.

So get your waist-high galoshes on, fire up PHP in CodeRunner, and let's get cracking.

What's a String Anyway?
And what is it hiding from us? String is its real name, right? Let's see what's go ing on here. Remember our LAMP
acronym?:

Type the fo llowing into a new PHP file in CodeRunner:

<?php

$lamp_l = "Linux";
$lamp_a = "Apache";
$lamp_m = "MySQL";
$lamp_p = "PHP";

echo "
The stack begins with ".$lamp_l.", and goes on to include "
 .$lamp_a.", ".$lamp_m.", and ".$lamp_p."!
";

//These supposedly simple strings are hiding something...

echo "Gimme an L! ".$lamp_l[0]."!
";
echo "Gimme an A! ".$lamp_a[0]."!
";
echo "Gimme an M! ".$lamp_m[0]."!
";
echo "Gimme a P! ".$lamp_p[0]."!
";

?>

Save it as st rings.php, then click Preview. You should see this:

The stack begins with Linux, and goes on to include Apache, MySQL, and PHP!
Gimme an L! L!
Gimme an A! A!
Gimme an M! M!
Gimme a P! P!

Wait a minute. Why were we just able to use the array operator [] to access the first letters o f the LAMP acronym? Aha,
now the truth comes forth.

That sneaky string doesn't want you to know it has a secret identity. You see, a st ring is a special type o f array, one
where each charact er -- letter, number, symbol, newline, whatever takes up one byte o f space -- is assigned a
numerical key index. Here's what the string "Linux" would look like in our pillbox representation from the arrays lesson:

Note The last box you see contains simply the NULL character, which has always been used to terminate
strings in the C language - the language PHP is based upon. (Check out the history o f PHP.)

Manipulating Strings
Let's explore strings further. We're go ing to make a new PHP file called bo lo gna.php.

http://en.wikipedia.org/wiki/Character_%28computing%29
http://www.php.net/history

Type the fo llowing into CodeRunner:

<?php

function spell_me($mystring) {
 $i = 0;
 while ($mystring[$i] != null) {
 if ($i == 0) {
 echo $mystring[$i];
 }
 else {
 echo " - ".$mystring[$i];
 }
 $i++;
 }
}

$string_1 = "bologna";
$string_2 = "oscar";
$string_3 = $string_2;

$string_3[0] = 'm';
$string_3[1] = 'a';
$string_3[2] = 'y';
$string_3[3] = 'e';

//Sing along if you remember the commercial!

echo "My ".$string_1." has a first name, it's ";
spell_me($string_2);
echo "
";

echo "My ".$string_1." has a second name, it's ";
spell_me($string_3);
echo "
";

?>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

echo "That ".$string_2." ".$string_3." has a way

 With ";
spell_me($string_1);
echo "!";

?>

Note For reference here's the Oscar Mayer bo logna song

Preview for the lyrics o f the song:

My bologna has a f irst name, it 's o - s - c - a - r
My bologna has a second name, it 's m - a - y - e - r
Oh I love to eat it every day,
And if you ask me, why I'll say...
That oscar mayer has a way
With b - o - l - o - g - n - a!

Through the power o f commercial jingles, we're able to uncover two more truths about strings: not only can we access
the characters within a string using the [] operator, but we can use the same operator to traverse and manipulate
strings, just like arrays.

http://www.youtube.com/watch?v=rmPRHJd3uHI

Take another look:

function spell_me($mystring) {
 $i = 0;
 while ($mystring[$i] != null) {
 if ($i == 0) {
 echo $mystring[$i];
 }
 else {
 echo " - ".$mystring[$i];
 }
 $i++;
 }
}

$string_1 = "bologna";
$string_2 = "oscar";
$string_3 = $string_2;

$string_3[0] = 'm';
$string_3[1] = 'a';
$string_3[2] = 'y';
$string_3[3] = 'e';

.

.

.

In our function spell_me() , we used a while lo o p to traverse the string parameter, stopping when we reached the null
character. Then we manipulated $st ring_3 by assigning new characters to the indices we wanted to change. In no
time, "oscar" turned to "mayer," and all were spelled correctly.

Go ahead, keep humming the tune - we don't mind.

Other nifty string shortcuts

Type the BLUE stuff into your document in CodeRunner:

<?php

function spell_me($mystring) {
 $i = 0;
 while ($mystring[$i] != null) {
 if ($i == 0) {
 echo $mystring[$i];
 }
 else {
 echo " - ".$mystring[$i];
 }
 $i++;
 }
}

$string_1 = "bologna";
$string_2 = "oscar";
$string_3 = $string_2;

$string_3[0] = 'm';
$string_3[1] = 'a';
$string_3[2] = 'y';
$string_3[3] = 'e';

//Sing along if you remember the commercial!

echo "My $string_1 has a first name, it's "; //we took out the concat operators
spell_me($string_2);
echo "
";

echo "My $string_1 has a second name, it's ";
spell_me($string_3);
echo "
";

?>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

echo "That $string_2 $string_3 has a way

 With ";
spell_me($string_1);
echo "!";

?>

Preview this. Nothing changed, right? This is a coo l shortcut created especially fo r strings in PHP, called
embedding variables. Since you'll most likely use PHP in web pages, you can thank us later fo r showing you
this shortcut. It provides a more intuitive method o f creating and outputting dynamic strings without the need
for all those annoying concat operators and quotation marks.

There's only one small complication with this shortcut. What happens if you want to display an actual do llar
sign ($) along with all the embedded variables?

Type the fo llowing into CodeRunner:

<?php

function spell_me($mystring) {
 $i = 0;
 while ($mystring[$i] != null) {
 if ($i == 0) {
 echo $mystring[$i];
 }
 else {
 echo " - ".$mystring[$i];
 }
 $i++;
 }
}

$string_1 = "bologna";
$string_2 = "oscar";
$string_3 = $string_2;

$string_3[0] = 'm';
$string_3[1] = 'a';
$string_3[2] = 'y';
$string_3[3] = 'e';

//Sing along if you remember the commercial!

echo "My $string_1 has a first name, it's "; //we took out the concat operators
spell_me($string_2);
echo "
";

echo "My $string_1 has a second name, it's ";
spell_me($string_3);
echo "
";

?>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

echo "That $string_2 $string_3 has a way

 With ";
spell_me($string_1);
echo "!";

echo "
As you can see, $string_1 was passed into the parameter $mystring.";

?>

You should get something like this:

My bologna has a f irst name, it 's o - s - c - a - r
My bologna has a second name, it 's m - a - y - e - r
Oh I love to eat it every day,
And if you ask me, why I'll say...
That oscar mayer has a way
With b - o - l - o - g - n - a!
As you can see, bologna was passed into the parameter .

Well, that's a bunch o f bo logna. While we wanted to output the actual variable names, the echo command
tried to replace them with their values instead. This happens anytime echo sees a do llar sign ($) fo llowed by
something that could pass as a variable name.

How can we stop it? Escape it.

Type the fo llowing into CodeRunner:

<?php

function spell_me($mystring) {
 $i = 0;
 while ($mystring[$i] != null) {
 if ($i == 0) {
 echo $mystring[$i];
 }
 else {
 echo " - ".$mystring[$i];
 }
 $i++;
 }
}

$string_1 = "bologna";
$string_2 = "oscar";
$string_3 = $string_2;

$string_3[0] = 'm';
$string_3[1] = 'a';
$string_3[2] = 'y';
$string_3[3] = 'e';

//Sing along if you remember the commercial!

echo "My $string_1 has a first name, it's "; //we took out the concat operators
spell_me($string_2);
echo "
";

echo "My $string_1 has a second name, it's ";
spell_me($string_3);
echo "
";

?>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

echo "That $string_2 $string_3 has a way

 With ";
spell_me($string_1);
echo "!";

echo "
As you can see, \$string_1 was passed into the parameter \$mystring."
;

?>

You should get this:

My bologna has a f irst name, it 's o - s - c - a - r
My bologna has a second name, it 's m - a - y - e - r
Oh I love to eat it every day,
And if you ask me, why I'll say...
That oscar mayer has a way
With b - o - l - o - g - n - a!
As you can see, $string_1 was passed into the parameter $mystring.

Ah, much better. Just by adding a little backslash (\) before each do llar sign ($), we're able to tell PHP that we
really do want the name itself displayed, not the value.

That backslash is handy for escaping several o ther characters too. Refer to your book or to php.net to embed
them all into your subconscious.

Built-in String Functions
"String functions?" you say, "I don't need no stinking string functions. I could use all the built- in array functions on
strings too!"

While that may be true in C, PHP treats strings as a different t ype with its own set o f built- in functions, generally
keeping their secret identity under wraps. Try using an array function to traverse a string:

http://www.php.net/manual/en/language.types.string.php

Type the fo llowing into CodeRunner:

<?php

function spell_me($mystring) {
 for ($i = 0; $i < count($mystring); $i++) {
 if ($i == 0) {
 echo $mystring[$i];
 }
 else {
 echo " - ".$mystring[$i];
 }
 }
}

$string_1 = "bologna";
$string_2 = "oscar";
$string_3 = $string_2;

$string_3[0] = 'm';
$string_3[1] = 'a';
$string_3[2] = 'y';
$string_3[3] = 'e';

//Sing along if you remember the commercial!

echo "My $string_1 has a first name, it's "; //we took out the concat operators
spell_me($string_2);
echo "
";

echo "My $string_1 has a second name, it's ";
spell_me($string_3);
echo "
";

?>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

echo "That $string_2 $string_3 has a way

 With ";
spell_me($string_1);
echo "!";

echo "
As you can see, \$string_1 was passed into the parameter \$mystring.";

?>

Preview it and you should get this:

My bologna has a f irst name, it 's o
My bologna has a second name, it 's m
Oh I love to eat it every day,
And if you ask me, why I'll say...
That oscar mayer has a way
With b!
As you can see, $string_1 was passed into the parameter $mystring.

Not exactly the catchiest lyrics anymore. Now try it with a built- in string function.

Type the fo llowing into CodeRunner:

<?php

function spell_me($mystring) {
 for ($i = 0; $i < strlen($mystring); $i++) {
 if ($i == 0) {
 echo $mystring[$i];
 }
 else {
 echo " - ".$mystring[$i];
 }
 }
}

$string_1 = "bologna";
$string_2 = "oscar";
$string_3 = $string_2;

$string_3[0] = 'm';
$string_3[1] = 'a';
$string_3[2] = 'y';
$string_3[3] = 'e';

//Sing along if you remember the commercial!

echo "My $string_1 has a first name, it's "; //we took out the concat operators
spell_me($string_2);
echo "
";

echo "My $string_1 has a second name, it's ";
spell_me($string_3);
echo "
";

?>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

echo "That $string_2 $string_3 has a way

 With ";
spell_me($string_1);
echo "!";

echo "
As you can see, \$string_1 was passed into the parameter \$mystring.";

?>

You should get this:

My bologna has a f irst name, it 's o - s - c - a - r
My bologna has a second name, it 's m - a - y - e - r
Oh I love to eat it every day,
And if you ask me, why I'll say...
That oscar mayer has a way
With b - o - l - o - g - n - a!
As you can see, $string_1 was passed into the parameter $mystring.

See, it's not such a bad thing. Having specialized string functions means they'll be faster, easier, and more intuitive to
use.

Soon we'll be working with HTML forms and dynamic inputs, which really flex the muscles o f built- in PHP string
functions. However, even without fo rms, string functions have thousands o f uses. Here we have peppered our oscar
mayer song with a plethora o f useful string functions. Play, experiment, and refer back to your book or to php.net as
much as you need. Try out the code below. Can you figure out how they all work?

http://www.php.net/manual/en/function.substr.php

Type the fo llowing into CodeRunner:

<?php

function spell_me($mystring) {
 for ($i = 0; $i < strlen($mystring); $i++) {
 if ($i == 0) {
 echo strtoupper($mystring[$i]);
 }
 else {
 echo " - ".strtoupper($mystring[$i]);
 }
 }
}

$string_1 = "bologna";
$string_2 = "oscar mayer";
$space_index = strpos($string_2, " ");

//let's spell boloney how we really say it...
echo "My ".str_replace('gna','ney',$string_1)." has a first name, it's ";
spell_me(substr($string_2,0,$space_index));
echo "
";

echo "My $string_1 has a second name, it's ";
spell_me(substr($string_2,$space_index+1)); //notice this has only two parameters
echo "
";

?>

Oh I love to eat it every day,

And if you ask me, why I'll say...

<?

//we're tired of putting in the HTML
 tags...
echo "That $string_2 ".nl2br("has a way
 With ");
spell_me($string_1);
echo "!";

$sale_price = 1; //a dollar
echo "
On sale for ".number_format($sale_price, 2)."!";

?>

Before we move on, experiment with these questions in CodeRunner:

Does it matter whether you use single quotation marks (') or double quotation m
arks (") with strings?
Can you mix the two types of quotation marks? Do you have to escape them if yo
u do?
Are there any built-in array functions that do work with strings?
Would you have built the substr() function differently?

Regular Expressions
Not many subjects can make a programmer groan like that o f regular expressio ns. They are immensely useful, yes
- they are used to create "wildcard" strings so that you can, say, verify that someone has entered a valid email address
or a correct phone number format. However, learning "Regex" patterns can sometimes feel as though you're
deciphering the Rosetta Stone. Even the ever-helpful php.net pawns you o ff to a cryptic "man page" when dealing with
Regex rules. Aargh.

But hey! We've got "learning by do ing" on our side. And when we learn by do ing, we can accomplish anything.

http://www.php.net/manual/en/ref.regex.php

Type the fo llowing into a new PHP file in CodeRunner:

<?php

//here's a simple function to check Regex patterns against string parameters

function check_regex($myregex, $mystring) {
 if (preg_match("/$myregex/", $mystring)) {
 echo "The pattern '$myregex' is found in $mystring.
";
 }
 else {
 echo "The pattern '$myregex' is NOT found in $mystring.
";
 }
}

$regex_1 = "log";

$string_1 = "bologna";
check_regex($regex_1, $string_1);

?>

You should get:

The pattern 'log' is found in bologna.

Here we have an example o f a regular expressio n -- a simple string: "log." And by using the built- in PHP function
preg_mat ch() , we are simply checking to see if a "log" is found in "bo logna." Of course it is. Notice the quotes and
forward slashes needed around the $myregex variable. These are needed because preg_match is a PERL style regex
matching function and regex's in PERL must have forward slashes. See what happens if you remove the slashes.

So, you may wonder why we didn't just use the built- in string function st rpo s() . We could have. But here's where it
gets interesting...

The plo t thickens. Type the fo llowing into CodeRunner:

<?php

//here's a simple function to check Regex patterns against string parameters

function check_regex($myregex, $mystring) {
 if (preg_match("/$myregex/", $mystring)) {
 echo "The pattern '$myregex' is found in $mystring.
";
 }
 else {
 echo "The pattern '$myregex' is NOT found in $mystring.
";
 }
}

$regex_1 = "log$";

$string_1 = "bologna";
check_regex($regex_1, $string_1);

$string_2 = "catalog";
check_regex($regex_1, $string_2);

?>

Preview this:

The pattern 'log$' is NOT found in bologna.
The pattern 'log$' is found in catalog.

Now THIS result we could not get from st rpo s. Since when is a do llar sign ($) found in the word "catalog"?

As it turns out, the do llar sign has a special meaning in regular expressions, and it's different from the meaning it
usually has for PHP variables. In regular expressions, placing a do llar sign ($) after a string means "at the end of the
string".

Take another look:

<?php

.

.

.

$regex_1 = "log$";

$string_1 = "bologna";
check_regex($regex_1, $string_1);

$string_2 = "catalog";
check_regex($regex_1, $string_2);

?>

Because we specified $regex_1 to be " lo g$" and not just " lo g" , our function check_regex() now checks to see if
" lo g" is found at the end o f each o f our strings. This is why it returned t rue fo r "catalog," but f alse fo r "bo logna."

This is the key to regular expressions. More than just a random string too l, regular expressions are an entirely different
language for creating and comparing strings with very specific patterns in mind: the presence o f specific characters, the
number o f occurrences o f each character, and their location in the string. In this case, we were concerned with the
location o f the string "log." Let's try another one...

Type the fo llowing into CodeRunner:

<?php

//here's a simple function to check Regex patterns against string parameters

function check_regex($myregex, $mystring) {
 if (preg_match("/$myregex/", $mystring)) {
 echo "The pattern '$myregex' is found in $mystring.
";
 }
 else {
 echo "The pattern '$myregex' is NOT found in $mystring.
";
 }
}

$regex_1 = "^cat";

$string_1 = "concatenate";
check_regex($regex_1, $string_1);

$string_2 = "catalog";
check_regex($regex_1, $string_2);

?>

The pattern '^cat ' is NOT found in concatenate.
The pattern '^cat ' is found in catalog.

You guessed it. Placing a carat (^) in front o f your Regex string means "at the beginning of the string."

Character Ranges and Number of Occurrences

Type the fo llowing into CodeRunner:

<?php

//here's a simple function to check Regex patterns against string parameters

function check_regex($myregex, $mystring) {
 if (preg_match("/$myregex/", $mystring)) {
 echo "The pattern '$myregex' is found in $mystring.
";
 }
 else {
 echo "The pattern '$myregex' is NOT found in $mystring.
";
 }
}

$regex_1 = "cat.*a";

$string_1 = "concatenate";
check_regex($regex_1, $string_1);

$string_2 = "catalog";
check_regex($regex_1, $string_2);

?>

Preview this:

The pattern 'cat .*a' is found in concatenate.
The pattern 'cat .*a' is found in catalog.

Whoa. That is a crazy Regex pattern. Yet it was found in the strings "concatenate" AND "catalog." What gives?

And speaking o f concatenate, isn't that period (.) the concatenate operator in PHP? Not this time. Just like the
do llar sign ($), the period (.) has a much different meaning when it comes to regular expressions. In this case,
it represents any character, like a wildcard.

As for the asterisk (*), that means "zero or more". Put it all together, and the regular expression "cat .*a"
means "the string 'cat,' followed by zero or more characters, followed by an 'a'".

Is that found in "co ncat enat e"? Yes: the string 'cat ' is found, fo llowed by two characters 'e ' and 'n' ,
fo llowed by an 'a' . How about "cat alo g"? Yep: 'cat ' is fo llowed by zero characters, fo llowed by an 'a' . Let's
try a REALLY crazy Regex:

Type the fo llowing into CodeRunner:

<?php

//here's a simple function to check Regex patterns against string parameters

function check_regex($myregex, $mystring) {
 if (preg_match("/$myregex/", $mystring)) {
 echo "The pattern '$myregex' is found in $mystring.
";
 }
 else {
 echo "The pattern '$myregex' is NOT found in $mystring.
";
 }
}

$regex_1 = "cat(a|e)+[a-z]{2,5}";

$string_1 = "concatenate";
check_regex($regex_1, $string_1);

$string_2 = "catalog";
check_regex($regex_1, $string_2);

$string_3 = "catamaran";
check_regex($regex_1, $string_3);

$string_4 = "scathing";
check_regex($regex_1, $string_4);

$string_5 = "pontificates";
check_regex($regex_1, $string_5);

?>

Preview this:

The pattern 'cat(a|e)+[a-z]{2,5}' is found in concatenate.
The pattern 'cat(a|e)+[a-z]{2,5}' is found in catalog.
The pattern 'cat(a|e)+[a-z]{2,5}' is found in catamaran.
The pattern 'cat(a|e)+[a-z]{2,5}' is NOT found in scathing.
The pattern 'cat(a|e)+[a-z]{2,5}' is NOT found in pont if icates.

Now, this may seem overwhelming, but it's actually just a series o f simple Regex patterns. Let's break them
down:

cat (a|e)+[a-z]{2,5}

(a|e) : The pipe character (|) in regular expressions means OR, so in this case we're looking for
"either an 'a' or an 'e'". Parentheses(()) are used to separate out expressions when we are nesting
them, just like always.
+ : The plus sign (+) is just like the asterisk (*), except it's looking for o ne o r mo re o f the
characters it fo llows. Since we preceded it with the expression (a|e) , in this case it means "one or
more of either 'a' or 'e'".
[a-z] : To allow entire ranges o f characters as a shortcut, we use square brackets ([]) and the dash
(-). So in this case, we're looking for "any lowercase letter from 'a' to 'z'".
{2,5} : Curly braces ({}) are used like the plus sign and asterisk, indicating a range o f occurrences
of the preceding expression. In this case, because {2,5} fo llows [a-z] , we're looking for "2 to 5
occurrences of any lowercase letter from 'a' to 'z'".

Put it all together, and we find that the pattern cat (a|e)+[a-z]{2,5} in Regex-speak means "The string 'cat',
followed by one or more 'a's or 'e's, followed by at least 2, but not more than 5 lowercase letters, from 'a' to 'z'."

Can you figure out why it's not found in "scat hing" o r "po nt if icat es"?

Excluding Characters

Now, if you thought THAT was confusing, consider this: What if you had the all- important task o f, say,
removing funky characters from a file name and replacing them with something benign? Here's where things
REALLY get screwy.

Type the fo llowing into CodeRunner:

<?php

//here's a simple function to check Regex patterns against string parameters

function check_regex($myregex, $mystring) {
 if (preg_match("/$myregex/", $mystring)) {
 echo "The pattern '$myregex' is found in $mystring.
";
 }
 else {
 echo "The pattern '$myregex' is NOT found in $mystring.
";
 }
}

//here's a function that takes in a file name, and replaces all funky characters
 with an underscore "_"

function clean_filename($file_name) {
 $bad_characters = "[^a-zA-Z0-9.]";
 $new_filename = preg_replace("/$bad_characters/", "_", $file_name);
 return $new_filename;
}

$bad_filename = "file[3*1 name.doc";

$good_filename = clean_filename($bad_filename);

echo "'$bad_filename' has been changed to '$good_filename'.";

?>

Preview this:

'f ile[3*1 name.doc' has been changed to 'f ile_3_1_name.doc'.

We know, we know, this makes no sense at all. First o f all, the carat (^) is supposed to mean "at the beginning
of the string." The period (.) is supposed to represent a wildcard character. And what's with the ranges o f
characters -- a-z , A-Z , and 0-9 -- stuck together like that? Groan.

Well, as it turns out, when it comes to whatever's in the square brackets ([]), the rules change. Let's take a
closer look at brackets in regular expressions.

[^a-zA-Z 0-9.]

^: When used within square brackets, the carat (^) negates everything after it - just like the
exclamation po int(!) in PHP. So in this case it's looking for characters that DON'T match what's
inside the brackets.
a-zA-Z 0-9 : Everything within square brackets comes together to represent only one character.
Therefore, characters placed within the brackets are treated as if a pipe character (|) was inserted in
between each one. For instance, [abcd] is the same as (a|b|c|d) , and in this case, a-zA-Z 0-9 is
the same as ([a-z]|[A-Z]|[0-9]) , o r more simply, "any alphanumeric character".
.: Within square brackets, every character except fo r the carat(^), the dash(-), and the right bracket
itself(]) is taken as a literal character - including the period(.) that would normally be considered a
wildcard character.

Put it all together, and we find that the pattern [^a-zA-Z 0-9.] actually means "any character which is NOT an
alphanumeric character or a period.".

Escaping Characters

Regular Expressio ns are extremely useful in PHP - especially since you'll be do ing a lo t o f HTML form
processing. For instance, how can you ensure that someone's entered their phone number properly?

Type the fo llowing into CodeRunner:

<?php

//here's a simple function to check Regex patterns against string parameters

function check_regex($myregex, $mystring) {
 if (preg_match("/$myregex/", $mystring)) {
 echo "The pattern '$myregex' is found in $mystring.
";
 }
 else {
 echo "The pattern '$myregex' is NOT found in $mystring.
";
 }
}

//here's a function that takes in a file name, and replaces all funky characters
 with an underscore "_"

function clean_filename($file_name) {
 $bad_characters = "[^a-zA-Z0-9.]";
 $new_filename = preg_replace("/$bad_characters/", "_", $file_name);
 return $new_filename;
}

//here's a function which validates an American phone number

function validate_phone($phone_number) {
 $good_phone = "^\(?[0-9]{3}\)?(|-|\.)[0-9]{3}(-|\.)[0-9]{4}$";

 if (preg_match("/$good_phone/", $phone_number)) {
 echo "$phone_number is valid.
";
 }
 else echo "$phone_number is NOT valid.
";
}

$phone_number1 = "34x.d98.1123";
validate_phone($phone_number1);

$phone_number2 = "(217) 555-1212";
validate_phone($phone_number2);

?>

Preview this:

34x.d98.1123 is NOT valid.
(217) 555-1212 is valid.

Let's break this down: ^\(?[0-9]{3} \)?(|-|\.)[0-9]{3} (-|\.)[0-9]{4}$

^: Since we're outside any square brackets, the carat (^) takes on its original meaning—"at the
beginning of the string." By the same token, we use the do llar sign ($) to mean "at the end of the
string," so that we have an exact match.
\(?: Some Americans use parentheses (()) to enclose the 3-digit area code o f their phone
numbers. To allow this possibility, we use the question mark (?) much like the asterisk or plus
sign, only this time to denote "zero or one" o f the leading parenthesis ((). However, because
parentheses usually mean nesting, we use a backslash (\) to escape the character. This must
always be done when not within the square brackets. The same is true with \)?.
[0-9]{3} : Since the area code o f the American phone number system uses exactly 3 digits, we use
{3} to require exactly 3 o f any digit, denoted by [0-9] . We use the same logic with the 3-digit prefix,
as well as the ending 4 digits o f the phone number.

(|-|\.) Usually between the area code and the prefix o f a phone number, fo lks use either a space ("
"), a dash (-), o r a period(.). Therefore, we use the parentheses(()) along with the pipe character (|)
to say "either a space or a dash or a period." We put a backslash before the period because we
must escape it. An unescaped period matches a single character without caring what that character
is. So since we want a literal period, we add the backslash to "escape" the character having that
special meaning.

In case your eyes are crossing right now, remember that regular expressio ns take a lo t o f patience, practice, and
trial-and-error to get right. Refer back to this lesson, to books you may have, or to the web, o ften. Here's a great article
on regular expressions in PHP.

Whew! We've covered a lo t o f ground. Don't fo rget to Save your work and hand in your assignment s from your syllabus. See
you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://www.phpbuilder.com/columns/dario19990616.php3
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Fixing Broken PHP

This lesson is all about frustration. Frustration that comes in the form of parse erro rs, inf init e
lo o ps, unmat ched bracket s, and lo gical mist akes. Frustration that makes your face
grimace and your fingers type furiously, pounding as if sheer fo rce could will the keys into
assembling proper PHP code from the mangled mess that is your own program. Ah yes, we
know this feeling well.

In previous lessons we focused on the basics o f PHP, keeping examples and pro jects to finite
blocks o f code. We're sure you've handled the frustrating errors like a trooper so far. In the
upcoming lessons, we'll begin constructing more complex programs to so lve real-world
problems, which means the threat o f frustration looms larger than ever. You're go ing to need
some serious ammo for creating and debugging scalable programs. Your sanity just may

depend on it.

So let's take a break from new PHP concepts and focus on technique for a while. Got CodeRunner in PHP syntax? Good - let's
get go ing.

Things Professors Don't Talk About Enough
We're guilty o f it too . We introduce you to concepts that theoretically work just fine, assuming that everything typed in
just so , and that we've explained the concept perfectly. So o f course these concepts will work perfectly fo r you, every
time you apply them, right?

Let's find out using the fo llowing silly program we assembled from concepts covered in previous lessons.

It's okay to copy and paste, JUST THIS ONCE! Paste this into CodeRunner:

<?
function mantra($the_sound,$the_number = 10) {
 $chant = 1;
 while ($chant <= $the_number;) {
 echo $the_sound."... ";
 }
}

function Mood_Chant($my_mood){
 if ($my_mood == "happy") {
 mantra("OM");
 $after_chant = "
I feel serene now.";
 }
 else if ($my_mood == "sad") {
 mantra("okay");
 $after_chant = "
I feel better now.";
 }
 else if ($my_mood == "angry") {
 mantra("mississippi");
 $after_chant = "
Ahhh, much better. I've calmed down now.";
 }
 else if ($my_outlook == "indifferent") {
 mantra("Wake up");
 $after_chant = "
I'm awake now.";
 }
 else {
 mantra("Try harder");
 $after_chant = "
I'll try harder now.";
 }
 return $after_chant;
}

function whats_my_emotion($cereal_prices, $cash_money) {
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $my_cash) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $my_cash) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $my_cash && $cereal_prices['Fruit_Loops'
] < $my_cash){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}
<h3>The emotional roller-coaster of buying breakfast cereal</h3>
<?
$cereal_prices = array('Captain_Crunch' => 5, 'Fruit_Loops' => 3);
$my_cash = 4;
?>
I have $<? echo $my_cash; ?> in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $<? echo $cereal_prices['Captain_Crunch']; ?>
Fruit Loops costs $<? echo $cereal_prices['Fruit_Loops']; ?>

$my_mood = whats_my_emotion($cereal_prices, $my_cash);
if (!($my_mood == "sad")) {

 $after_chant_mood = Mood_Chant($my_mood, $chant_number);
}
echo "
".$after_chant_mood;

?>

Preview this:

Parse error: syntax error, unexpected ';' in /users/cert josh/useract ivepreviewtmp123.php3
line 4

Okay, WRONG. Even a benign-looking program like the above works beautifully in theory, but never in practice -- at
least fo r the first hundred times you try it. Trust us. Do you think our examples worked perfectly the first time we wrote
them? Hardly.

But even with this relatively small amount o f code, where do you begin to debug it? Here is where you're usually on
your own...

...but hey, not in this lesson! We're not too far removed from our humble beginnings to know how hard it is to master
debugging. Consider this a support group for frustrated coders, and you're invited.

Debugging Tips

Utilizing Error Messages

Let's Preview again:

Parse error: syntax error, unexpected ';' in /users/cert josh/useract ivepreviewtmp123.php3
line 4

If you're lucky, you'll get an easy to see error message right away, like you're getting now. In o ther situations
you may have to ask your system administrator where she keeps the PHP error logs. In any case, the First
Rule o f Debugging is: check the error messages first. They may seem cryptic at times, but they almost always
give you the information you need. In particular, the line number where the problem is located.

Since our error message indicated line 4 , go to that line. What do you see?

Suddenly, our parse erro r is as loud as a mariachi band. There shouldn't be a semico lon (;) inside the
parentheses (()) o f a while lo o p! This is easy enough to fix: just remove the semico lon (;).

Good for you! You fixed the error, and now everything should work perfectly, right?

Riddle-Me-This Error Messages

Cross your fingers and Preview again:

Parse error: syntax error, unexpected '<' in /users/cert josh/useract ivepreviewtmp128.php3
line 53

Yikes, another error message! Mild frustration ensues. Well, no problem, we'll just do the same thing we did

before. But this time try the Go To Line button. Type in line 53:

Hmm, that's strange. This isn't even PHP code, it's HTML code -- and perfect HTML code, at that. Why would
PHP single out a line o f good HTML code in its error message?

We're go ing to have to look around for more clues, which brings us to the Second Rule o f Debugging: Check
lines closest to the error message second. Let's give that a shot, by looking at line 52:

And there you have it - a tiny curly bracket (}), indicative o f PHP code. Were you able to so lve the riddle o f the
error message? We forgot to delimit the PHP with a ?> between the PHP code and the HTML code, so the
PHP parser was attempting to read the HTML code as PHP! Hence the message: "unexpected '<' on line 53".
It didn't know any better.

Go ahead and add the delimiter (?>), and you have squashed another bug in our program. Let's hope that's
the last one.

Errors without Error Messages

Chant 'no error messages' three times, then Preview again:

The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $5
Fruit Loops costs $3

$my_mood = whats_my_emotion($cereal_prices, $my_money); if (!($my_mood == "sad")) {
$after_chant_mood = Mood_Chant($my_mood, $chant_number); } echo "
".$after_chant_mood; ?>

Hey, the chant worked - no error messages! But wait - there's still an error. Looks like "no error messages" is
not the same as "no errors". Which brings us to the Third Rule o f Debugging: When there are no error
messages, check your output. Or, just work on your chant.

Look at your Preview again. It seems that the trouble starts right after the statement: "Fruit Loops costs $3".
After that, chaos erupts. So let's take a look at our code now, and try to pinpo int the problem.

Pay attention to the errors we already fixed, and where the new error seems to be happening:

<?
function mantra($the_sound,$the_number = 10) {
 $chant = 1;
 while ($chant <= $the_number) { //first we took out the rogue semicolon...
 echo $the_sound."... ";
 }
}

function Mood_Chant($my_mood){
 if ($my_mood == "happy") {
 mantra("OM");
 $after_chant = "
I feel serene now.";
 }
 else if ($my_mood == "sad") {
 mantra("okay");
 $after_chant = "
I feel better now.";
 }
 else if ($my_mood == "angry") {
 mantra("mississippi");
 $after_chant = "
Ahhh, much better. I've calmed down now.";
 }
 else if ($my_outlook == "indifferent") {
 mantra("Wake up");
 $after_chant = "
I'm awake now.";
 }
 else {
 mantra("Try harder");
 $after_chant = "
I'll try harder now.";
 }
 return $after_chant;
}

function whats_my_emotion($cereal_prices, $cash_money) {
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $my_cash) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $my_cash) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $my_cash && $cereal_prices['Fruit
_Loops'] < $my_cash){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}
//then we added the delimiter here...
?>
<h3>The emotional roller-coaster of buying breakfast cereal</h3>
<?
$cereal_prices = array('Captain_Crunch' => 5, 'Fruit_Loops' => 3);
$my_cash = 4;
?>
I have $<? echo $my_cash; ?> in my pocket, and I want to buy some Captain Crunch
!

Captain Crunch costs $<? echo $cereal_prices['Captain_Crunch']; ?>
Fruit Loops costs $<? echo $cereal_prices['Fruit_Loops']; ?>

//BUT NOW THE PROBLEM APPEARS TO BE HERE

$my_mood = whats_my_emotion($cereal_prices, $my_cash);
if (!($my_mood == "sad")) {
 $after_chant_mood = Mood_Chant($my_mood, $chant_number);
}
echo "
".$after_chant_mood;

?>

Looking at the code, we see now that we've done it again - we've forgotten a delimit er, this time an opening
delimiter (<?). Why didn't we get an error message like before? Because this time the code went from HTML
to PHP - so it was HTML attempting to render the PHP code, not the o ther way around. HTML is more
forgiving in this sense, and simply prints out the code.

Be sure to add the delimiter <?. Are we done now?

Logical Errors

Signs po int to no:

The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $5
Fruit Loops costs $3

Oh well, I'm going home.

At first glance, everything appears to be correct. No error messages, no garbled output. But before you
breathe that sigh o f relief, remember that this silly program is supposed to determine our mood and
purchasing behavior, based on cereal prices and how much money we have.

Take another look at the code:

function whats_my_emotion($cereal_prices, $cash_money) {
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $my_cash) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $my_cash) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $my_cash && $cereal_prices['Fruit
_Loops'] < $my_cash){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}

From our output, we see that we have $4 -- not enough to buy Captain Crunch for $5, but enough to buy Fruit
Loops for $3. In our program, that's supposed to make us angry, but we'd rather invoke a calming mantra
chant and buy Fruit Loops anyway. So why are we dejected and go ing home?

This is called a lo gical erro r, and unfortunately it seems that the output isn't helping us much in the way o f

clues to fix it. Which brings us to the Fourth Rule o f Debugging: When the output doesn't show the error, create
strategic output that does.

Type the fo llowing green code into CodeRunner:

<?
function mantra($the_sound,$the_number = 10) {
 $chant = 1;
 while ($chant <= $the_number) { //first we took out the rogue semicolon...
 echo $the_sound."... ";
 }
}

function Mood_Chant($my_mood){
 if ($my_mood == "happy") {
 mantra("OM");
 $after_chant = "
I feel serene now.";
 }
 else if ($my_mood == "sad") {
 mantra("okay");
 $after_chant = "
I feel better now.";
 }
 else if ($my_mood == "angry") {
 mantra("mississippi");
 $after_chant = "
Ahhh, much better. I've calmed down now.";
 }
 else if ($my_outlook == "indifferent") {
 mantra("Wake up");
 $after_chant = "
I'm awake now.";
 }
 else {
 mantra("Try harder");
 $after_chant = "
I'll try harder now.";
 }
 return $after_chant;
}

function whats_my_emotion($cereal_prices, $cash_money) {
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $my_cash) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $my_cash) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $my_cash && $cereal_prices['Fruit
_Loops'] < $my_cash){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}
//then we added the delimiter here...
?>
<h3>The emotional roller-coaster of buying breakfast cereal</h3>
<?
$cereal_prices = array('Captain_Crunch' => 5, 'Fruit_Loops' => 3);
$my_cash = 4;
?>
I have $<?
//We know it's not here, because the output has been correct
echo $my_cash; ?> in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $<? echo $cereal_prices['Captain_Crunch']; ?>
Fruit Loops costs $<? echo $cereal_prices['Fruit_Loops']; ?>

<?
//then we added the delimiter here...

$my_mood = whats_my_emotion($cereal_prices, $my_cash);
//Let's add some echo statements to figure out our logic.
echo "\$my_mood is $my_mood";

if (!($my_mood == "sad")) {
 $after_chant_mood = Mood_Chant($my_mood, $chant_number);
}
echo "
".$after_chant_mood;

?>

Preview this:

The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $5
Fruit Loops costs $3

Oh well, I'm going home.$my_mood is sad

So we find that when the function what s_my_emo t io n() returns, its value is sad, no t angry. Since we know
the values o f $my_cash and $cereal_prices are correct, it looks like we've narrowed the problem down to
what s_my_emo t io n() . Now what do we do?

Let's add some more echo statements - but this time use them within what s_my_emo t io n() , just to see
what happens.

Add the fo llowing green code into CodeRunner:

<?
function mantra($the_sound,$the_number = 10) {
 $chant = 1;
 while ($chant <= $the_number) { //first we took out the rogue semicolon...
 echo $the_sound."... ";
 }
}

function Mood_Chant($my_mood){
 if ($my_mood == "happy") {
 mantra("OM");
 $after_chant = "
I feel serene now.";
 }
 else if ($my_mood == "sad") {
 mantra("okay");
 $after_chant = "
I feel better now.";
 }
 else if ($my_mood == "angry") {
 mantra("mississippi");
 $after_chant = "
Ahhh, much better. I've calmed down now.";
 }
 else if ($my_outlook == "indifferent") {
 mantra("Wake up");
 $after_chant = "
I'm awake now.";
 }
 else {
 mantra("Try harder");
 $after_chant = "
I'll try harder now.";
 }
 return $after_chant;
}

function whats_my_emotion($cereal_prices, $cash_money) {
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $my_cash) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $my_cash) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $my_cash && $cereal_prices['Fruit
_Loops'] < $my_cash){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 //We know the output is coming from here, so let's add echo statements:
 echo "Within whats_my_emotion, \$cereal_prices:<pre>";
 print_r($cereal_prices);
 echo "\$my_cash = ".$my_cash."</pre>";

 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}
//then we added the delimiter here...
?>
<h3>The emotional roller-coaster of buying breakfast cereal</h3>
<?
$cereal_prices = array('Captain_Crunch' => 5, 'Fruit_Loops' => 3);
$my_cash = 4;
?>

I have $<?
//We know it's not here, because the output has been correct
echo $my_cash; ?> in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $<? echo $cereal_prices['Captain_Crunch']; ?>
Fruit Loops costs $<? echo $cereal_prices['Fruit_Loops']; ?>

<?
//then we added the delimiter here...

$my_mood = whats_my_emotion($cereal_prices, $my_cash);
//Let's add some echo statements to figure out our logic.
echo "\$my_mood is $my_mood";

if (!($my_mood == "sad")) {
 $after_chant_mood = Mood_Chant($my_mood, $chant_number);
}
echo "
".$after_chant_mood;

?>

Preview this:

The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $5
Fruit Loops costs $3

Within whats_my_emotion, $cereal_prices:
Array
(
 [Captain_Crunch] => 5
 [Fruit_Loops] => 3
)
$my_cash =

Oh well, I'm going home.$my_mood is sad

This is starting to look pretty messy, but it does tell us everything we need to know. Through our echo and
print_r statements, we can see that the lo gical erro r is definitely within what s_my_emo t io n() . Why?
Because the parameter $my_cash was never properly passed in -- causing the resulting mood to be sad
instead o f angry.

Take a closer look at whats_my_emotion():

function whats_my_emotion($cereal_prices, $cash_money) {
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $my_cash) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $my_cash) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $my_cash && $cereal_prices['Fruit
_Loops'] < $my_cash){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 //We know the output is coming from here, so let's add echo statements:
 echo "Within whats_my_emotion, \$cereal_prices:<pre>";
 print_r($cereal_prices);
 echo "\$my_cash = ".$my_cash."</pre>";

 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}

Looking at our if /e lse st at ement s, we can see that we make all kinds o f comparisons between $my_cash
and the various cereal prices, yet no matter what we set $my_cash to before we pass it to
what s_my_emo t io n() , it comes up blank within what s_my_emo t io n() . And then the error becomes
clear: within what s_my_emo t io n() , the parameter should be called $cash_mo ney, NOT $my_cash!

And so, Sherlock, it looks like we have so lved the mystery o f the lo gical erro r. We can now remove the
extraneous echo and print_r statements and fix the problem, once and for all.

Type the fo llowing green code into CodeRunner:

<?
function mantra($the_sound,$the_number = 10) {
 $chant = 1;
 while ($chant <= $the_number) { //first we took out the rogue semicolon...
 echo $the_sound."... ";
 }
}

function Mood_Chant($my_mood){
 if ($my_mood == "happy") {
 mantra("OM");
 $after_chant = "
I feel serene now.";
 }
 else if ($my_mood == "sad") {
 mantra("okay");
 $after_chant = "
I feel better now.";
 }
 else if ($my_mood == "angry") {
 mantra("mississippi");
 $after_chant = "
Ahhh, much better. I've calmed down now.";
 }
 else if ($my_outlook == "indifferent") {
 mantra("Wake up");
 $after_chant = "
I'm awake now.";
 }
 else {
 mantra("Try harder");
 $after_chant = "
I'll try harder now.";
 }
 return $after_chant;
}

function whats_my_emotion($cereal_prices, $cash_money) {
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $cash_money) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $cash_money) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $cash_money && $cereal_prices['Fr
uit_Loops'] < $cash_money){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}
//then we added the delimiter here...
?>
<h3>The emotional roller-coaster of buying breakfast cereal</h3>
<?
$cereal_prices = array('Captain_Crunch' => 5, 'Fruit_Loops' => 3);
$my_cash = 4;
?>
I have $<? echo $my_cash; ?> in my pocket, and I want to buy some Captain Crunch
!

Captain Crunch costs $<? echo $cereal_prices['Captain_Crunch']; ?>
Fruit Loops costs $<? echo $cereal_prices['Fruit_Loops']; ?>

<?
//then we added the delimiter here...

$my_mood = whats_my_emotion($cereal_prices, $my_cash);
if (!($my_mood == "sad")) {
 $after_chant_mood = Mood_Chant($my_mood, $chant_number);
}
echo "
".$after_chant_mood;

?>

Infinite Loops, Infinite Headaches

Preview this:

The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $5
Fruit Loops costs $3

Fine! I'll get some Fruit Loops.mississippi... mississippi... mississippi... mississippi... mississippi...
mississippi... mississippi... mississippi... mississippi... mississippi... mississippi... mississippi...
mississippi... mississippi... mississippi... mississippi... mississippi... mississippi... mississippi... mississippi...
mississippi... mississippi... mississippi... mississippi... mississippi... mississippi... mississippi... mississippi...
mississippi... mississippi... mississippi... mississippi... mississippi... mississippi... mississippi... mississippi...

YIKES, MAKE IT STOP! This is one o f the worst errors o f all: inf init e lo o ps. It causes memory leaks in your
computer, aching in your head, and it may very well have crashed your entire browser...we hope that wasn't
the case.

This brings us to the Fifth Rule o f Debugging: Always end your loops!

Take a look at our while loop:

function mantra($the_sound,$the_number = 10) {
 $chant = 1;
 while ($chant <= $the_number) {
 echo $the_sound."... ";
 }
}

The good news is, in our case it's easy to see what went wrong. The while loop is set to end when $chant is
great er t han $t he_number, which defaults to 10. But we never increased $chant . Let's fix it!

Type the fo llowing into CodeRunner:

<?
function mantra($the_sound,$the_number = 10) {
 $chant = 1;
 while ($chant <= $the_number) { //first we took out the rogue semicolon...
 echo $the_sound."... ";
 $chant++;
 }
}

function Mood_Chant($my_mood){
 if ($my_mood == "happy") {
 mantra("OM");
 $after_chant = "
I feel serene now.";
 }
 else if ($my_mood == "sad") {
 mantra("okay");
 $after_chant = "
I feel better now.";
 }
 else if ($my_mood == "angry") {
 mantra("mississippi");
 $after_chant = "
Ahhh, much better. I've calmed down now.";
 }
 else if ($my_outlook == "indifferent") {
 mantra("Wake up");
 $after_chant = "
I'm awake now.";
 }
 else {
 mantra("Try harder");
 $after_chant = "
I'll try harder now.";
 }
 return $after_chant;
}

function whats_my_emotion($cereal_prices, $cash_money) {
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $cash_money) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $cash_money) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $cash_money && $cereal_prices['Fr
uit_Loops'] < $cash_money){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}
//then we added the delimiter here...
?>
<h3>The emotional roller-coaster of buying breakfast cereal</h3>
<?
$cereal_prices = array('Captain_Crunch' => 5, 'Fruit_Loops' => 3);
$my_cash = 4;
?>
I have $<? echo $my_cash; ?> in my pocket, and I want to buy some Captain Crunch
!

Captain Crunch costs $<? echo $cereal_prices['Captain_Crunch']; ?>
Fruit Loops costs $<? echo $cereal_prices['Fruit_Loops']; ?>

<?
//then we added the delimiter here...

$my_mood = whats_my_emotion($cereal_prices, $my_cash);
if (!($my_mood == "sad")) {
 $after_chant_mood = Mood_Chant($my_mood, $chant_number);
}
echo "
".$after_chant_mood;

?>

Preview this:

The emotional roller-coaster of buying breakfast cereal

I have $4 in my pocket, and I want to buy some Captain Crunch!

Captain Crunch costs $5
Fruit Loops costs $3

Fine! I'll get some Fruit Loops.mississippi... mississippi... mississippi... mississippi... mississippi...
mississippi... mississippi... mississippi... mississippi... mississippi...

Ahhh, much better. I've calmed down now.

Ahh, much better. And although it was quite the ordeal, we're all the better fo r it. Pat yourself on the back and raise your
glass to stress relief through Debugging!

Notes on Scalable Programming
Now that you know the Rules o f Debugging, you're almost ready to put them to the test by building some large-scale
pro jects. However, before you go on, it's important to stress some very important po ints to help reduce your stress.

Before you Code, Pseudocode

What's pseudo co de? Just a little jo t-down of your program logic in English (or whatever your native
language may be). Like this:

Here's how we might pseudocode whats_my_emotion():

If I have enough money to buy both cereals,
 My mood is happy.
Otherwise, if I have enough money to buy Captain Crunch,
 My mood is indifferent.
Otherwise, if I can't buy Captain Crunch, but can buy Fruit Loops,
 My mood is angry.
Otherwise, I'm sad no matter what.

Pseudo co de is a way for you to organize your thoughts and design your logic before you start coding your
program. Think o f it as a blueprint fo r your so ftware development. Using pseudocode, you can take a look at
the big picture and catch any flaws in your design--before they cause you a week's worth o f debugging. Plus,
you can refer back to it as you go to ensure that you're sticking to your original design.

Make your Program Readable

What if we had coded whats_my_emotion() like this?

function what_is_it($a, $b = false) {
 if ($a >= $b) {
 $c = "happy";
 }
 else if ($d[0] < $b) {
 $c = "indifferent";
 }
 else if ($d[0] > $b && $d[1] < $b) {
 $c = "angry";
 }
 else {
 $c = "sad";
 }
 return $c;
}

Sure, we know exactly what it means at the time we write it, but when we go back later, we might not have a
clue what any o f it means, rendering it essentially worthless. And by the way, if you write code like this, fo rget
ever getting promoted - you won't find anyone who can decipher your code enough to take over your lower
position. You'd be stuck with it, buddy.

So just be sure to use readable, intuitive variable, and function names all the time, every time. If you find
yourself slipping into using vague names, just remember what we to ld you about promotion. That should
snap you back into shape.

Comment Until You're Blue in the Face

By the same token, you can kick your program's readability up a notch by using comments whenever you can.
Use them to help recall what you've done, or to indicate to o ther programmers what your functions do. That's
why they're there after all.

In particular, it's imperative that you start o ff each program, and every function within it, with a synopsis o f the
functions it performs, parameters it takes, and what it returns.

Like this:

function whats_my_emotion($cereal_prices, $cash_money) {
 #whats_my_emotion returns an emotion of happy, indifferent, angry or sad base
d upon
 #two parameters, $cereal_prices -- an array of floats -- and float $cash_mone
y.
 $total = array_sum($cereal_prices); //array_sum is a built-in PHP function
 if ($total < $cash_money) {
 $mood = "happy";
 echo "I'll buy both Captain Crunch and Fruit Loops!";
 }
 else if ($cereal_prices['Captain_Crunch'] < $cash_money) {
 $mood = "indifferent";
 echo "I'll buy Captain Crunch.";
 }
 else if ($cereal_prices['Captain_Crunch'] > $cash_money && $cereal_prices['Fr
uit_Loops'] < $cash_money){
 $mood = "angry";
 echo "Fine! I'll get some Fruit Loops.";
 }
 else {
 $mood = "sad";
 echo "Oh well, I'm going home.";
 }
 return $mood;
}

This will become more and more important as you build more reusable code, and even libraries which can be

shared by o thers--either within your company, or within the o pen-so urce co mmunit y.

Code in Bite-Size Chunks

You'll no tice throughout these lessons that our chosen process o f learning to build programs is extremely
repetitious - we typed a bit o f code, Previewed it, added a little more code, Previewed it, and so on.

If you program one small part o f your code at a time, you'll be much less likely to be overwhelmed with bugs
and logical errors when it comes time to test. This is where your pseudocode can help as well, by showing
you where you can divide your large program into smaller, "bite-size" chunks to make it more manageable.

Debug as You Work

There's nothing worse than writing a HUGE amount o f code, only to find it's a complete mess. As long as you
Preview o ften, you'll catch bugs as you go along, which will make your life much easier in the long run.

Reuse Functions as Much as Possible

What if we had written several different functions instead o f one what s_my_emo t io n() , o r simply copied
and pasted the same code throughout our program? Instead o f fixing the code once, we would have had to
deal with it over and over again.

The biggest argument fo r creating f unct io ns fo r anything and everything: if something goes wrong with the
code, you only have to debug it o nce , then every time it's called, it works.

Always create a function for any finite task, even if you're not sure you'll use it more than once. You'll be
surprised at how useful it will become as you continue programming.

Utilize Available Resources

As if we haven't been preaching it enough: we live in an age where information is always available. There are
reference books, Safari accounts, and web sites like PHP.net. Use them. And if you can't find your answer,
there are communities o f millions o f PHP programmers just like yourself you can consult. Don't be afraid to
ask questions!

Can you believe how far you've come? So far you've learned all the basics o f PHP you need to get go ing with some meaty web
pro jects. And from now on, that's exactly what you're go ing to do.

Don't fo rget to Save your work and hand in your assignment s from your syllabus. See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://oreilly.com/
http://my.safaribooksonline.com/?portal=oreilly
http://www.php.net/manual/en/function.number-format.php
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Forms in PHP

As promised, you're about to put the material you've learned into robust, real-world applications. Until now, there has been only
one thing missing from your skillset preventing this: user input .

PHP was created specifically to work with the internet - to make the web surfer's life easier by customizing his experience, and
to make the programmer's life easier by making that customization convenient fo r her. But without a way to gather information
from the web surfer, all the convenience and power o f PHP is worthless. What good is customization if the user's needs aren't
met?

We are able to gather user input through a little HTML tag called <f o rm> . Since we'll be using HTML and PHP in tandem, be
prepared to use bo t h HT ML and PHP synt ax. Let's go!

Forms Review
Start with an HTML form. Make sure you're using HT ML syntax, and TYPE the fo llowing:

CODE TO TYPE:

<body>
<h3>Contact ACME Corporation</h3>
<form method="POST" action="contact.php">
<table>
<tr>
<td align="right">
Name:
</td>
<td align="left">
<input type="text" size="25" name="name" value="">
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<input type="text" size="25" name="email" value="">
</td>
</tr>
<tr>
<td align="right">
Type of Request:
</td>
<td align="left">
<select name="whoami">
<option value="" />Please choose...
<option value="newcustomer" />I am interested in becoming a customer.
<option value="customer" />I am a customer with a general question.
<option value="support" />I need technical help using the website.
<option value="billing" />I have a billing question.
</select>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="">
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">
<textarea name="message" cols="50" rows="8">
</textarea>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article

<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>
</tr>
<tr>
<td colspan="2">
<input type="checkbox" name="update1" checked="checked">Please email me updates about y

our products.

<input type="checkbox" name="update2">Please email me updates about products from third
-party partners.
</td>
</tr>
<tr>
<td colspan="2" align="center">
<input type="submit" value="SUBMIT" />
</td></tr>
</table>
</form>
</body>

You'll see this:

Contact ACME Corporation

Name:

Email:

Type of Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

SUBMIT

Look familiar? This is a simple contact fo rm, where a user can inquire about the services on a website and give a little
information about him/herself. Also noteworthy is that it contains all the major fo rm types: t ext , t ext area, select ,
radio , checkbo x, and submit .

Each form element has a name attribute and a value attribute, except fo r t ext area, which has an ending tag instead o f
a value attribute. Furthermore, radio buttons all have the same name to ensure only one is checked, while
checkbo xes have different names so that any o f them can be checked. select tags contain their names and values
within separate o pt io n tags, fo r that nice drop-down-menu effect.

Note You mean it doesn't look familiar? We're assuming this is review for you - if you're completely lost, you
may want to take a look at our HTML and CSS course.

It's a nice-looking form, but if you want something done with that information, you're go ing to have to create a PHP
script to process the input. Go ahead and Save yo ur f o rm -- you can name it co nt act .ht ml.

Using Superglobals to Read Form Inputs
Now, let's switch CodeRunner to PHP and start a new file.

In PHP, type the fo llowing:

<?php

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$_POST['name']."
";
echo "Email: ".$_POST['email']."
";
echo "Type of Request: ".$_POST['whoami']."
";
echo "Subject: ".$_POST['subject']."
";
echo "Message: ".$_POST['message']."
";
echo "How you heard about us: ".$_POST['found']."
";
echo "Update you about our products: ".$_POST['update1']."
";
echo "Update you about partners' products: ".$_POST['update2']."
";

?>

Preview this:

Thank You!

Here is a copy of your request:

Name:
Email:
Type of Request:
Subject :
Message:
How you heard about us:
Update you about our products:
Update you about partners' products:

Well, that didn't do much good. And what's this $_POST [] array anyway??

But wait, there's more. Save this PHP file and call it co nt act .php. Now, switch back to HT ML in CodeRunner, where
you should still have your co nt act .ht ml file ready.

Preview this, and fill in the form:

https://oreillyschool.com/courses/html5css/

Contact ACME Corporation

Name: Trish

Email: t rish@myemail.com

Type of Request: I need technical help using the website.

Subject : Please help!
Message: I can't get the darn thing to work!

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

SUBMIT

Now, within your Preview window, click SUBMIT. What did you get?

Hopefully you got something like this:

Thank You!

Here is a copy of your request:

Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
Update you about our products: on
Update you about partners' products:

So why did it work this time? Here's where the magic o f that $_POST [] array is revealed.

Take another look at the form tag in contact.html:

<form method="POST" action="contact.php">

If you remember, fo rms themselves can be submitted using several different methods - two o f the most important
methods are GET and POST . If you've ever programmed a web application in a different language - say Perl o r C -
you might also remember using complicated CGI libraries to extract fo rm data from either the query st ring in the case
of the GET method, or from the enviro nment variables in the case o f the POST method.

However, because PHP was created with the web in mind, this process has been greatly simplified, using special
variables called superglo bals.

Let's look at contact.php again:

<?php

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$_POST['name']."
";
echo "Email: ".$_POST['email']."
";
echo "Type of Request: ".$_POST['whoami']."
";
echo "Subject: ".$_POST['subject']."
";
echo "Message: ".$_POST['message']."
";
echo "How you heard about us: ".$_POST['found']."
";
echo "Update you about our products: ".$_POST['update1']."
";
echo "Update you about partners' products: ".$_POST['update2']."
";

?>

Did you notice something familiar about the key indices o f $_POST [] -- name , email, who ami, etc.? You see, PHP
does all the work for you here - it processes the form input and places all the values into the superglo bal array
$_POST [] , an associative array with the key indices corresponding to the form element names. This is done
automatically, whenever a form is submitted using the POST met ho d, and the array works in any scope - that's why
it's called a superglo bal variable.

Note
By convention, we don't normally use the underscore at the beginning o f variable names (as in
$_POST). However, they are used in superglo bals to prevent any clashing with your own variable
names.

What do you do if you use the GET met ho d in your fo rm? Experiment with this and find out. If you need help, check
out php.net.

Extracting Superglobals into Variables
As if the superglo bal variables weren't easy enough, PHP goes even further to make reading form inputs easy for
you.

http://www.php.net/manual/en/language.variables.predefined.php

In PHP, change contact.php with the fo llowing blue code:

<?php

extract($_POST, EXTR_PREFIX_SAME, "post");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";
echo "Update you about our products: ".$update1."
";
echo "Update you about partners' products: ".$update2."
";

?>

Save co nt act .php again, then go back to co nt act .ht ml and Preview. What did you get?

Preview contact.html and submit the form like before:

Thank You!

Here is a copy of your request:

Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
Update you about our products: on
Update you about partners' products:

Wow - it worked even without the $_POST [] array! This is yet another simplification in the process that can be done
through the built- in function ext ract () . In this case, the form elements passed through the $_POST [] array have been
extracted into PHP variables, accessible by anything within the program. We indicated to ext ract () that we wanted the
PHP variable names to correspond to the form element names by passing in the flag EXT R_PREFIX_SAME as a
parameter. You can read more about ext ract () here: http://www.php.net/manual/en/function.extract.php.

Note
In previous versions o f PHP, a php config directive called regist er glo bals automatically created global
variables from GET and POST form elements. However, many dangers arose in using register globals,
and as a result, PHP has removed them from PHP 5 and newer versions.

Superglo bals are brilliant innovations in web programming - all built into PHP to make your world an easier place to
live. Not to mention our world - did you notice just how short this lesson is? Exactly.

Nesting Variable Names
Just one more coo l feature before we move on...

http://www.php.net/manual/en/function.extract.php
http://www.php.net/manual/en/security.globals.php

In PHP, change contact.php with the fo llowing, in blue:

<?php

extract($_POST, EXTR_PREFIX_SAME, "post");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

?>

Preview contact.html and submit the form like before:

Thank You!

Here is a copy of your request:

Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
update1: on
update2:

Did you see what happened there? We were able to dynamically construct the name of our "update#" fo rm elements
through a f o r lo o p, and then access the value o f that element through the variables we created with ext ract () . This
was done by nesting variable names.

Take another look:

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": "; << evaluates to "update1" or "update2"
 echo $$element_name; << evaluates to $update1 or $update2, whose values are "on" or
 "off"
 echo "
";
}

Nesting variable names is just like all the nesting we did in previous lessons - first $element _name is evaluated,
and then that value is used to evaluate the nested $($element _name) . Name nesting can be done with ALL
variables, however, it's especially useful when you create dynamic form names and then need to read them with the
variables passed in through superglo bals and ext ract () . It's definitely worth learning this handy trick.

We're just getting warmed up with forms. Don't fo rget to Save your work and hand in your assignment s from your syllabus.
See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Utilizing Internet Tools

In the last lesson, we created a contact fo rm for customers to communicate with the customer support department o f a
corporation. But it's not quite ready for prime time yet. So far, we have no way o f knowing what kind o f computer or browser the
customer is using, no way to catch incomplete form entries, and no way to , well, send the message out.

It's time to fix this! Fire up CodeRunner and open the two files we were working on before: co nt act .ht ml and co nt act .php.

Environment and Server Variables
Preview contact.html and submit the form like before:

Thank You!

Here is a copy of your request:

Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
update1: on
update2:

Have you ever received a customer support request like this? We have. It's more common than you may think, and it
can leave you scratching your head—this customer can't get the darn website to work, yet leaves the details o f the
problem to your mind-reading skills.

Let's look into our crystal ball...

In PHP, change contact.php as shown in blue:

<?php

extract($_POST, EXTR_PREFIX_SAME, "post");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Switch to contact.html, Preview, and submit the form like before:

Thank You!

Here is a copy of your request:

Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit /418
(KHTML, like Gecko) Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

When it comes to customer support, just as important as the customer's request is knowing where the customer is
coming from—perhaps geographically, but more importantly in the sense o f what operating system (Windows, Mac)
and browser (Safari, Internet Explorer, Firefox) they're using.

Luckily, the fo lks who worked on our very first web browsers way back in the day, already thought o f this. They created
something called CGI (Common Gateway Interface) Enviro nment Variables, which tell us a lo t about both the
client —that's the customer's computer—as well as the server -- that's the computer where your PHP script resides
(in our case, it's sitting in Champaign, Illino is).

Take another look at this code:

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

You guessed it—$_SERVER[] is another superglo bal array in PHP. That underscore(_) at the beginning tends to
give it away. The information that $_SERVER[] ho lds? Enviro nment variables like HT T P_USER_AGENT and
HT T P_X_FORWARDED_FOR. But what do they mean?

Now take another look at the output:

You are currently working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/4
18 (KHTML, like Gecko)
Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

Not so luckily, the fo lks who created the environment variables didn't make them easy to decipher. Here's a little
translation for the two we're using:

HT T P_USER_AGENT gives you information about the computer and web software your customer is
using. Since you're testing your own form, it should be telling you what computer and web software you're
using. The format is something like this: o perat ing syst em/versio n (mo re inf o) web library/versio n
(mo re inf o) web bro wser/versio n (mo re inf o) .

In our case, we got the information Mo zilla/5 .0 (Macint o sh; U; PPC Mac OS X; en) AppleWebKit /418 (KHT ML,
like Gecko) Saf ari/417.9 .2. Very cryptically, this tells us that we are on a Macintosh computer with a Mac OS X
operating system, using the Safari web browser. Obviously, your result will most likely be different from this—you
might be on a Windows XP computer, fo r instance, using Internet Explorer (MSIE). Here is a list o f more browsers than
you'll ever care to know, and their HTTP_USER_AGENT translations. Can you find yours?

HT T P_X_FORWARDED_FOR gives you the IP address o f either your customer's computer, o r if your
customer is using an Internet Service Provider like AOL, the IP address o f one o f its servers. What's an IP
(Int ernet Pro t o co l) address? Every computer on the internet has one -- a unique identifier, chosen
within the Internet Pro toco l Standard. It's useful to know, because it can indicate the customer's country o f
origin, through any Whois too l. More importantly, if it has been determined that a particular customer is a
fraud, there are ways to block the IP address from ever getting to your site—something you will learn in a
later course.

There are lo ts o f useful enviro nment variables. Here is a very useful list to reference.

Using HTTP Headers
Another important issue in customer support—and really any interface that requires form input—is ensuring that all
fields are properly filled in. How can you help a customer if he doesn't include his email address or contact info? But o f
course he'll include it, right? You'd be surprised.

http://www.zytrax.com/tech/web/browser_ids.htm
http://whois.arin.net/ui/
http://en.wikipedia.org/wiki/Environment_variable

In PHP, change contact.php with the fo llowing blue code:

<?php

#We used the superglobal $_POST here
if (!($_POST['name'] && $_POST['email'] && $_POST['whoami']
 && $_POST['subject'] && $_POST['message'])) {
 echo "Please make sure you've filled in all required information.";
 exit();
}

extract($_POST, EXTR_PREFIX_SAME, "post");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Note Notice the new built- in PHP function we used here: exit () . This essentially stops the program in its
tracks. How's that fo r lack o f commitment?

Switch to contact.html, Preview, and submit the form like before—only this time, try leaving something blank:

Please make sure you've f illed in all required informat ion.

So essentially when someone leaves something blank, we're letting them know about it. But now the customer has to
go back to the form and find out what's wrong. What if we could take them back to the form automatically? Let's give it a
shot:

In PHP, change contact.php with the fo llowing, in blue:

<?php

#We used the superglobal $_POST here
if (!($_POST['name'] && $_POST['email'] && $_POST['whoami']
 && $_POST['subject'] && $_POST['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $url = "http://".$_SERVER['HTTP_HOST']."/contact.html";
 header("Location: ".$url);
 exit();
}

extract($_POST, EXTR_PREFIX_SAME, "post");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Switch to contact.html, Preview your fo rm, and submit it, leaving something blank. You should get this:

Contact ACME Corporation

Name:

Email:

Type of Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

SUBMIT

Whoa! What just happened? If you left something blank on your fo rm and submitted it, you just got the same form back,
blank again.

Let's take another look at this code:

 $url = "http://".$_SERVER['HTTP_HOST']."/contact.html";
 header("Location: ".$url);
 exit();

You may already know that all HTML-based web pages use the HyperT ext T ransf er Pro t o co l (HT T P) to render
properly in your web browser—that's why you always see ht t p:// at the beginning o f every web address. But what you
may NOT know is that before any HTML is rendered on your web browser, a series o f invisible headers are passed
so that your browser knows exactly what to do with the code. Most o f these headers are pretty obscure, but a few are
extremely useful. Click here for a reference.

Of course, since PHP embeds HTML within its code, it can also manipulate HT T P headers through the built- in
function header() . In this case, we were able to set the header "Lo cat io n: " with the URL of the contact fo rm
co nt act .ht ml we created. As a result o f sending that header, the browser redirected the user back to the form.

Note Any headers that are sent using header() must come BEFORE any PHP or HTML output. Otherwise, the
browser will get confused, and next thing you know, you're debugging.

You'll also notice we used another enviro nment variable , called HT T P_HOST . This variable returns the do main
name o f the web address where your co nt act .php script resides.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

In our case, our domain name, or HTTP_HOST, is jo sh.o nza.net . It is a live web site, on the internet fo r everyone to
see: http://josh.onza.net/. Pretty lame web site, huh? Keep this in mind when you create your website using your own
domain name—you could have a lame web site like us, or you could have a pro fessional online portfo lio to show to
all your friends, co lleagues, and potential employers when you apply fo r your first LAMP-based programming job.

Manipulating Query Strings
But we digress. And in the meantime, simply redirecting our poor customer to a blank form is a horrible way to treat
someone who 's already frustrated with the website. There has to be a more user-friendly way to ask the customer to
fix a form field before we submit it.

The problem is, since co nt act .ht ml is a static HTML page, we can't dynamically add anything to it—that's why it's
blank. And simply giving the error message "Please fix this" to the customer, like we did before, isn't user-friendly
either. What we need is a way to show the customer, nicely, exactly what he needs to fix on the form, without losing any
of the answers he's already filled in.

We can do this by converting the HTML form into a PHP script o f its own. What you need to do is Save co nt act .ht ml
in PHP synt ax, but sure t o call it "co nt act _f o rm.php" . Or if you'd rather, just copy and paste the HTML code
into a new PHP file.

http://josh.onza.net/

Be sure you're in PHP, and add the fo llowing blue code to contact_form.php:

<body>
<h3>Contact ACME Corporation</h3>
<form method="GET" action="contact.php">
<table>
<tr>
<td align="right">
Name:
</td>
<td align="left">
<input type="text" size="25" name="name" value="<? echo $_GET['name']; ?>" />
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<input type="text" size="25" name="email" value="<? echo $_GET['email']; ?>" />
</td>
</tr>
<tr>
<td align="right">
Type of Request:
</td>
<td align="left">
<select name="whoami">
<option value="" />Please choose...
<option value="newcustomer"<?
if ($_GET['whoami'] == "newcustomer") {
 echo " selected";
}
?> />I am interested in becoming a customer.
<option value="customer"<?
if ($_GET['whoami'] == "customer") {
 echo " selected";
}
?> />I am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
 echo " selected";
}
?> />I need technical help using the website.
<option value="billing"<?
if ($_GET['whoami'] == "billing") {
 echo " selected";
}
?> />I have a billing question.
</select>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="<? echo $_GET['subject']; ?
>" />
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">
<textarea name="message" cols="50" rows="8">
<? echo $_GET['message']; ?>

</textarea>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article

<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>
</tr>
<tr>
<td colspan="2">
<input type="checkbox" name="update1" checked="checked" />Please email me updates about
 your products.

<input type="checkbox" name="update2" />Please email me updates about products from thi
rd-party partners.
</td>
</tr>
<tr>
<td colspan="2" align="center">
<input type="submit" value="SUBMIT" />
</td></tr>
</table>
</form>
</body>

Now, Preview contact_form.php:

Contact ACME Corporation

Name:

Email:

Type of Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

SUBMIT

You'll no tice here that we've switched the met ho d attribute in the HTML form tag from POST to GET , and we've
introduced some PHP echo statements using the $_GET [] superglo bal. But so far, no changes have taken place—
we still get the same blank form with co nt act _f o rm.php as we did with co nt act .ht ml.

Note

The ht mlspecialchars() function can be used when obtaining the values for the input tags. For example:

<input type="text" size="25" name="email" value="<? echo
htmlspecialchars($_GET['email'],ENT_QUOTES, 'UTF-8 '); ?>" /> </td>

This function converts some predefined characters to HTML entities and will help to pro tect your code
against cross site scripting. A detailed discussion o f web application security in beyond the scope o f this
course, but please check out the fo llowing links for additional information:

link
link.

Be sure to Save co nt act _f o rm.php, since the Lo cat io n: header will redirect you back to the saved version o f
co nt act _f o rm.php, NOT the Preview version.

http://www.php.net/manual/en/function.htmlspecialchars.php
https://en.wikipedia.org/wiki/Cross-site_scripting

Switch to contact.php, and make the fo llowing changes in blue:

<?php

#We used the superglobal $_GET here
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string;

 header("Location: ".$url);
 exit();

}

extract($_GET, EXTR_PREFIX_SAME, "get");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Remember to save contact.php, then switch back to contact_form.php and Preview.

When you submit the form, be sure that you leave one field blank to see what happens:

Contact ACME Corporation

Name: Trish

Email: t rish@myemail.com

Type of Request: I need technical help using the website.

Subject : Woops, I lef t the message f ield blank!
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

SUBMIT

Now here's some real progress. When you submit the form with a field or two blank, the form still comes back—but
this time, all the fields at the top have been filled in. This is much better, because now the user doesn't have to redo
everything.

Let's take another look at the code we used in contact.php:

#We used the superglobal $_GET here
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING']
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string;
 header("Location: ".$url);
 exit();

}

extract($_GET, EXTR_PREFIX_SAME, "get");

We switched our fo rm to have met ho d=GET so that our data will come through to our script from the query st ring.
The query st ring consists o f all the encoded data you see after the question mark (?) in your URL when you submit

the form:

And, since we have the handy enviro nment variable QUERY_ST RING, we can simply use the $_SERVER[]
superglobal to grab it and send it back to co nt act _f o rm.php.

And if you look again at contact_form.php:

<input type="text" size="25" name="name" value="<? echo $_GET['name']; ?>" />

You'll see that we were able to harness the query st ring yet again—through the superglobal $_GET []—to fill in the
input tags with the customer's original data.

Customizing specific error messages

Now it's time to use our newly-formed script co nt act _f o rm.php to tell the customer exactly what needs to
be done. To do this, however, we first need to manipulate the query st ring a bit:

In PHP, switch to contact.php, and make the fo llowing changes, in blue:

<?php

#We used the superglobal $_GET here
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixe
d
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&e
rror=1";
 header("Location: ".$url);
 exit();

}

extract($_GET, EXTR_PREFIX_SAME, "get");

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_
X_FORWARDED_FOR'];

?>

Make sure you Save contact.php, and switch to co nt act _f o rm.php:

In PHP, add the fo llowing to contact_form.php, in blue:

<?php

if ($_GET['error'] == "1") {
 $error_code = 1; //this means that there's been an error and we need to noti
fy the customer
} else {
 $error_code = 0;
}

?>

<body>
<h3>Contact ACME Corporation</h3>
<?
if ($error_code) {
 echo "<div style='color:red'>Please help us with the following:</div>";
}
?>
<form method="GET" action="contact.php">
<table>
<tr>
<td align="right">
Name:
</td>
<td align="left">
<input type="text" size="25" name="name" value="<? echo $_GET['name']; ?>" />
<?
if ($error_code && !($_GET['name'])) {
 echo "Please include your name.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<input type="text" size="25" name="email" value="<? echo $_GET['email']; ?>" />
<?
if ($error_code && !($_GET['email'])) {
 echo "Please include your email address.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Type of Request:
</td>
<td align="left">
<select name="whoami">
<option value="" />Please choose...
<option value="newcustomer"<?
if ($_GET['whoami'] == "newcustomer") {
 echo " selected";
}
?> />I am interested in becoming a customer.
<option value="customer"<?
if ($_GET['whoami'] == "customer") {
 echo " selected";
}
?> />I am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
 echo " selected";
}

?> />I need technical help using the website.
<option value="billing"<?
if ($_GET['whoami'] == "billing") {
 echo " selected";
}
?> />I have a billing question.
</select>
<?
if ($error_code && !($_GET['whoami'])) {
 echo "Please choose a request type.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="<? echo $_GET['subje
ct']; ?>" />
<?
if ($error_code && !($_GET['subject'])) {
 echo "Please add a subject for your request.";
}
?>
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">
<textarea name="message" cols="50" rows="8">
<? echo $_GET['message']; ?>
</textarea>
<?
if ($error_code && !($_GET['message'])) {
 echo "Please fill in a message for us.";
}
?>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article<b
r/>
<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>
</tr>
<tr>
<td colspan="2">
<input type="checkbox" name="update1" checked="checked" />Please email me update
s about your products.

<input type="checkbox" name="update2" />Please email me updates about products f
rom third-party partners.
</td>
</tr>
<tr>
<td colspan="2" align="center">
<input type="submit" value="SUBMIT" />
</td></tr>

</table>
</form>
</body>

Again, be sure to Save contact_form.php, and then Preview, leaving one field blank. What did you get?

We get something like this:

Contact ACME Corporation

Please help us with the following:
Name: Please include your name.
Email: t rish@myemail.com

Type of
Request: I need technical help using the website.

Subject : Woops, I lef t the message f ield blank!
Message:

 Please f ill in a message for
us.

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

MUCH better. Now the customer knows exactly what's wrong, he can fix it, and submit the support request
easily.

Sending Emails
Finally, we can do what we wanted to do all along: send the support request via email. Never one to let us down, PHP
has just the function for us: mail() . Let's try it:

In PHP, switch to contact.php, and make the fo llowing changes, in blue:

<?php

#We used the superglobal $_GET here
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixed
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&error=1"
;
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

extract($_GET, EXTR_PREFIX_SAME, "get");

#construct email message
$email_message = "Name: ".$name."
 Email: ".$email."
 Type of Request: ".$whoami."
 Subject: ".$subject."
 Message: ".$message."
 How you heard about us: ".$found."
 User Agent: ".$_SERVER['HTTP_USER_AGENT']."
 IP Address: ".$_SERVER['REMOTE_ADDR'];

#construct the email headers
$to = "support@example.com"; //for testing purposes, this should be YOUR email address
.
//We will send the emails from our own server
$from = "anything@yourlogin.oreillystudent.com";

$email_subject = $_GET['subject'];

#now mail
mail($to, $email_subject, $email_message, "From: ".$from);

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Save co nt act .php, switch to contact_form.php, Preview, and submit the form.

If you filled in all the required fields, you should get something like before:

Thank You!

Here is a copy of your request:

Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit /418
(KHTML, like Gecko) Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

However, this time, if you included your own email in the $t o variable, you should have a brand new customer support
message in your email inbox.

Don't fo rget to Save your work and hand in the assignment s from your syllabus. See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Date and Time

You'll find that Date and Time play a huge part in programming - they are useful fo r timestamps, logs, and are needed in just
about every database entry you'll create. And although they're somewhat tricky to harness, PHP has done well in simplifying the
process.

Open the two files we were working on before: co nt act _f o rm.php and co nt act .php.

Date and Time Standards

Switch to contact.php, and make the fo llowing changes, in green:

<?php

#We used the superglobal $_GET here instead of the register globals, for safety
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixed
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&error=1"
;
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

extract($_GET, EXTR_PREFIX_SAME, "get");

#construct email message
$email_message = "Name: ".$name."
 Email: ".$email."
 Type of Request: ".$whoami."
 Subject: ".$subject."
 Message: ".$message."
 How you heard about us: ".$found."
 User Agent: ".$_SERVER['HTTP_USER_AGENT']."
 IP Address: ".$_SERVER['HTTP_X_FORWARDED_FOR'];

#construct the email headers
$to = "support@example.com"; //for testing purposes, this should be YOUR email address
.
//We will send the emails from our own server
$from = "anything@yourlogin.oreillystudent.com";

$email_subject = "CONTACT #".time().": ".$_GET['subject'];

#now mail
mail($to, $email_subject, $email_message, "From: ".$from);

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Note Notice we're breaking one o f our own cardinal rules here - doubling up on code that could be taken care
of with one function. Feel free to punish us within your own code.

Save co nt act .php, switch to contact_form.php, Preview, and submit the form.

If you filled in all the required fields, you should get something like this:

Thank You!

Here is a copy of your request:

CONTACT #1148955473:
Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit /418
(KHTML, like Gecko) Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

Although we're using it as a t imest amp here, the number we got actually measures how many seconds have passed
since Unix Epo ch -- that's a fancy name for January 1st, 1970, at midnight (00:00:00) GMT. Why is that time the Unix
Epo ch? No good reason really, except that some early computer scientists agreed on it a long time ago as a dat e
and t ime st andard.

Sounds nerdy, but it's really a good thing - it enables us to harness date and time, not only in PHP, but also in mySQL
and lo ts o f o ther techno logy languages. For instance, you'll be using PHP functions to process SQL timestamps in
later courses.

Date and Time Functions
Obviously, dat e and t ime st andards weren't created for us to use merely as a unique identification number -
although that's handy. What else can they do for us? Enter the built- in PHP functions.

http://en.wikipedia.org/wiki/Unix_time

Switch to contact.php, and make the fo llowing changes, in green:

<?php

#We used the superglobal $_GET here instead of the register globals, for safety
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixed
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&error=1"
;
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

extract($_GET, EXTR_PREFIX_SAME, "get");

#construct email message
$email_message = "Message Date: ".date("F d, Y h:i a")."
 Name: ".$name."
 Email: ".$email."
 Type of Request: ".$whoami."
 Subject: ".$subject."
 Message: ".$message."
 How you heard about us: ".$found."
 User Agent: ".$_SERVER['HTTP_USER_AGENT']."
 IP Address: ".$_SERVER['HTTP_X_FORWARDED_FOR'];

#construct the email headers
$to = "support@example.com"; //for testing purposes, this should be YOUR email address
.
//We will send the emails from our own server
$from = "anything@yourlogin.oreillystudent.com";

$email_subject = "CONTACT #".time().": ".$_GET['subject'];

#now mail
mail($to, $email_subject, $email_message, "From: ".$from);

echo "<h3>Thank you!</h3>";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Again, if you Save co nt act .php, then Preview contact_form.php, you might get something like this:

Thank You!

Here is a copy of your request:

CONTACT #1148955473:
Message Date: May 29, 2006 10:25 pm
Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit /418
(KHTML, like Gecko) Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

This time, instead o f a cryptic timestamp, the date o f the message has been nicely fo rmatted for us through the dat e()
function.

Let's take another look:

echo "Message Date: ".date("F d, Y h:i a")."
";

The paramet er fo r the dat e() function is a special coded f o rmat that PHP replaces with the proper time/date data.
For instance, "F" is replaced with the name of the month - in our case, May, and "a" is replaced with am o r pm ,
depending on the time - in our case, pm . Here is the php.net reference for time/date formats.

f o rmat
charact er Descript io n Example

ret urned values

Day --- ---

d Day o f the month, 2 digits with leading zeros 01 to 31

D A textual representation o f a day, three letters Mon through Sun

j Day o f the month without leading zeros 1 to 31

l
(lowercase
'L')

A full textual representation o f the day o f the week Sunday through
Saturday

N ISO-8601 numeric representation o f the day o f the week (added in PHP 5.1.0)
1 (fo r Monday)
through 7 (fo r
Sunday)

S English ordinal suffix fo r the day o f the month, 2 characters st, nd, rd o r th.
Works well with j

w Numeric representation o f the day o f the week
0 (fo r Sunday)
through 6 (fo r
Saturday)

z The day o f the year (starting from 0) 0 through 365

Week --- ---

http://www.php.net/manual/en/function.date.php

W ISO-8601 week number o f year, weeks starting on Monday (added in PHP 4.1.0)
Example: 42 (the
42nd week in the
year)

Month --- ---

F A full textual representation o f a month, such as January or March January through
December

m Numeric representation o f a month, with leading zeros 01 through 12

M A short textual representation o f a month, three letters Jan through Dec

n Numeric representation o f a month, without leading zeros 1 through 12

t Number o f days in the given month 28 through 31

Year --- ---

L Whether it's a leap year 1 if it is a leap year,
0 o therwise.

o
ISO-8601 year number. This has the same value as Y, except that if the ISO week
number (W) belongs to the previous or next year, that year is used instead.
(added in PHP 5.1.0)

Examples: 1999 o r
2003

Y A full numeric representation o f a year, 4 digits Examples: 1999 o r
2003

y A two digit representation o f a year Examples: 99 o r 03

Time --- ---

a Lowercase Ante meridiem and Post meridiem am o r pm

A Uppercase Ante meridiem and Post meridiem AM o r PM

B Swatch Internet time 000 through 999

g 12-hour fo rmat o f an hour without leading zeros 1 through 12

G 24-hour fo rmat o f an hour without leading zeros 0 through 23

h 12-hour fo rmat o f an hour with leading zeros 01 through 12

H 24-hour fo rmat o f an hour with leading zeros 00 through 23

i Minutes with leading zeros 00 to 59

s Seconds, with leading zeros 00 through 59

Timezone --- ---

e Timezone identifier (added in PHP 5.1.0)
Examples: UTC,
GMT,
Atlantic/Azores

I (capital i) Whether or not the date is in daylights savings time
1 if Daylight
Savings Time, 0
otherwise.

O Difference to Greenwich time (GMT) in hours Example: +0200

P Difference to Greenwich time (GMT) with co lon between hours and minutes
(added in PHP 5.1.3) Example: +02:00

T Timezone setting o f this machine Examples: EST,
MDT ...

Z Timezone o ffset in seconds. The o ffset fo r timezones west o f UTC is always
negative, and for those east o f UTC is always positive.

-43200 through
43200

Full
Date/Time --- ---

c ISO 8601 date (added in PHP 5) 2004-02-
12T15:19:21+00:00

r RFC 2822 formatted date
Example: Thu, 21
Dec 2000 16:01:07
+0200

http://www.faqs.org/rfcs/rfc2822.html

U Seconds since the Unix Epoch (January 1 1970 00:00:00 GMT)

Constructing Dates and Times

Now, suppose Acme, Inc. had a customer service po licy claiming "We'll get back to you in 48 hours." You'll
want to use the date o f the message to give the customer support representative an idea o f the deadline she
has.

Make sure you have contact.php, and make the fo llowing changes, in green:

<?php

#We used the superglobal $_GET here instead of the register globals, for safety
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixe
d
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&e
rror=1";
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

extract($_GET, EXTR_PREFIX_SAME, "get");

#construct email message

#we want a deadline 2 days after the message date.
$deadline_array = getdate();
$deadline_day = $deadline_array['mday'] + 2;
$deadline_str = $deadline_array['month']." ".$deadline_day." ".$deadline_array['
year'];

$email_message = "Message Date: ".date("F d, Y h:i a")."
 Please reply by: ".$deadline_str."
 Name: ".$name."
 Email: ".$email."
 Type of Request: ".$whoami."
 Subject: ".$subject."
 Message: ".$message."
 How you heard about us: ".$found."
 User Agent: ".$_SERVER['HTTP_USER_AGENT']."
 IP Address: ".$_SERVER['HTTP_X_FORWARDED_FOR'];

#construct the email headers
$to = "support@example.com"; //for testing purposes, this should be YOUR email
address.
//We will send the emails from our own server
$from = "anything@yourlogin.oreillystudent.com";

$email_subject = "CONTACT #".time().": ".$_GET['subject'];

#now mail
mail($to, $email_subject, $email_message, "From: ".$from);

echo "<h3>Thank you!</h3>";
echo "We'll get back to you by ".$deadline_str.".
";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {

 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_
X_FORWARDED_FOR'];

?>

Save contact.php, switch to contact_form.php and Preview:

Thank You!

We'll get back to you by May 31 2006.
Here is a copy of your request:

CONTACT #1148955473:
Message Date: May 29, 2006 10:25 pm
Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit /418
(KHTML, like Gecko) Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

Take another look:

#we want a deadline 2 days after the message date.
$deadline_array = getdate();
$deadline_day = $deadline_array['mday'] + 2;
$deadline_str = $deadline_array['month']." ".$deadline_day." ".$deadline_array['
year'];

Here, the function get dat e() , like t ime() , gets a stamp of the current time. However, instead o f just an
integer, get dat e() extracts the data and outputs an asso ciat ive array that looks a bit like this:

Here's what a getdate() output array might look like:

Array
(
 [seconds] => 40
 [minutes] => 58
 [hours] => 21
 [mday] => 29
 [wday] => 1
 [mon] => 5
 [year] => 2006
 [yday] => 160
 [weekday] => Monday
 [month] => May
 [0] => 1055901520
)

This array makes it easy to construct a new date relative to the current date - all we have to do is add 2 to the
'mday' array value, and suddenly we have a deadline for the customer support representative. Fast service
means happy customers.

But wait a minute - what if today was, say, the 31st o f May? Just adding 2 to that will give you an invalid date.
We could do a series o f if statements to fix this, but that's a lo t o f unwieldy code. Luckily, PHP has yet another
handy function to help us.

In PHP, try adding the fo llowing green code to contact.php:

<?php

#We used the superglobal $_GET here instead of the register globals, for safety
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixe
d
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&e
rror=1";
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

extract($_GET, EXTR_PREFIX_SAME, "get");

#construct email message
#we want a deadline 2 days after the message date.
$deadline_array = getdate();
$deadline_day = $deadline_array['mday'] + 2;

$deadline_stamp = mktime($deadline_array['hours'],$deadline_array['minutes'],$de
adline_array['seconds'],
 $deadline_array['mon'],$deadline_day,$deadline_array['year']);
$deadline_str = date("F d, Y", $deadline_stamp);

$email_message = "Message Date: ".date("F d, Y h:i a")."
 Please reply by: ".$deadline_str."
 Name: ".$name."
 Email: ".$email."
 Type of Request: ".$whoami."
 Subject: ".$subject."
 Message: ".$message."
 How you heard about us: ".$found."
 User Agent: ".$_SERVER['HTTP_USER_AGENT']."
 IP Address: ".$_SERVER['HTTP_X_FORWARDED_FOR'];

#construct the email headers
$to = "support@example.com"; //for testing purposes, this should be YOUR email
address.
//We will send the emails from our own server
$from = "anything@yourlogin.oreillystudent.com";

$email_subject = "CONTACT #".time().": ".$_GET['subject'];

#now mail
mail($to, $email_subject, $email_message, "From: ".$from);

echo "<h3>Thank you!</h3>";
echo "We'll get back to you by ".$deadline_str.".
";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_
X_FORWARDED_FOR'];

?>

Save contact.php, switch to contact_form.php and Preview:

Thank You!

We'll get back to you by June 2 2006.
Here is a copy of your request:

CONTACT #1148962509:
Message Date: May 31, 2006 12:20 pm
Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can't get the darn thing to work!
How you heard about us: website
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit /418
(KHTML, like Gecko) Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

Take one more look:

$deadline_stamp = mktime($deadline_array['hours'],$deadline_array['minutes'],$de
adline_array['seconds'],
 $deadline_array['mon'],$deadline_day,$deadline_array['year']);
$deadline_str = date("F d, Y", $deadline_stamp);

The function mkt ime() fixes all those pesky date problems. It takes in the parameter data o f the date you
want to fo rmat, and creates the original t imest amp, which we then plug into dat e() to fo rmat properly.
Problem so lved!

Don't fo rget to Save your work and hand in your assignment s from your syllabus. See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Using Files

So far, we've created a simple corporate contact fo rm that accounts for user error and friendly reminders, successful output, and
sending o f the proper message. Pretty robust, but at the same time, you have to admit, it's pretty ugly. And it's not the most
pro fessional- looking interface on the web either.

In a perfect world, we'd have lo ts o f time to keep tweaking the PHP script to make every page look just so . But in most
situations, you won't have the luxury o f extra time, and you probably won't even be allowed to dictate how the page looks. Not
when there's a graphic designer down the hall. Just the same, you don't want the graphic designer down the hall messing with
your PHP scripts either. Here's where f ile t emplat es come in real handy.

Including and Requiring Files
Fire up CodeRunner and open up the two files we were working on before: co nt act _f o rm.php and co nt act .php.
After you do this, switch CodeRunner to HT ML synt ax. For just a moment, we're go ing to pretend that we are the
graphic designers down the hall.

In HTML, type the fo llowing, in blue:

<html>
<head>
<title>Acme, Inc.</title>
<link rel="stylesheet" href="http://students.oreillyschool.com/resource/php_lesson.css"
 type="text/css" />
</head>
<body>
<div class="topbar">
ACME, INC.
</div>
<table>
<tr><td class="sidebar" valign="top">
links go here
</td><td class="content">
Content goes here

</td></tr></table>
<div class="bottombar">
</div>
</body>
</html>

Preview this:

ACME, INC.
links go here Content goes here

What we have here is a basic "C-Clamp" design template for a corporate web page: logo on top, links on the side,
something on the bottom to wrap the content nicely, and a CSS file to add a little style (here we've provided one for
you). This will make our contact fo rm look slightly better than it did before.

But how do you most easily place our content within this C-Clamp? You could simply embed the HTML into the PHP
script itself, but this creates a big problem - if the graphic designer decides to make a change, you're stuck making that

same change in every PHP script you've written. And if you work for a large corporation, this could mean dozens, even
hundreds o f files.

It would be great is if you could reuse the code, like when you create PHP functions.

In HTML, remove the second half o f our C-Clamp:

<html>
<head>
<title>Acme, Inc.</title>
<link rel="stylesheet" href="http://students.oreillyschool.com/resource/php_lesson.css"
 type="text/css" />
</head>
<body>
<div class="topbar">
ACME, INC.
</div>
<table>
<tr><td class="sidebar" valign=top>
links go here
</td><td class="content">

Now, Save this file and name it t emplat e_t o p.inc.

Note Why use .inc? Just fo r clarity - this isn't a complete HTML file, so no need to name it with a .html suffix.

In HTML, create a NEW file, containing the second half o f our C-Clamp:

</td></tr></table>
<div class="bottombar">
</div>
</body>
</html>

Save this file and name it t emplat e_bo t t o m.inc.

Add the fo llowing to contact_form.php, in green:

<?php

 require($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

if ($_GET['error'] == "1") {
 $error_code = 1; //this means that there's been an error and we need to notify the
customer
}

?>
<body>
<h3>Contact ACME Corporation</h3>
<?
if ($error_code) {
 echo "Please help us with the following:";
}
?>
<form method=GET action="contact.php">
<table>
<tr>
<td align="right">
Name:
</td>
<td align="left">
<input type="text" size="25" name="name" value="<? echo $_GET['name']; ?>">
<?
if ($error_code && !($_GET['name'])) {
 echo "Please include your name.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<input type="text" size="25" name="email" value="<? echo $_GET['email']; ?>">
<?
if ($error_code && !($_GET['email'])) {
 echo "Please include your email address.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Type of Request:
</td>
<td align="left">
<select name="whoami">
<option value="">Please choose...
<option value="newcustomer"<?
if ($_GET['whoami'] == "newcustomer") {
 echo " selected";
}
?>>I am interested in becoming a customer.
<option value="customer"<?
if ($_GET['whoami'] == "customer") {
 echo " selected";
}
?>>I am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
 echo " selected";

}
?>>I need technical help using the website.
<option value="billing"<?
if ($_GET['whoami'] == "billing") {
 echo " selected";
}
?>>I have a billing question.
</select>
<?
if ($error_code && !($_GET['whoami'])) {
 echo "Please choose a request type.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="<? echo $_GET['subject']; ?
>">
<?
if ($error_code && !($_GET['subject'])) {
 echo "Please add a subject for your request.";
}
?>
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">
<textarea name="message" cols=50 rows=8>
<? echo $_GET['message']; ?>
</textarea>
<?
if ($error_code && !($_GET['message'])) {
 echo "Please fill in a message for us.";
}
?>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth">Word of Mouth

<input type="radio" name="found" value="search">Online Search

<input type="radio" name="found" value="article">Printed publication/article

<input type="radio" name="found" value="website">Online link/article

<input type="radio" name="found" value="other">Other

</td>
</tr>
<tr>
<td colspan="2">
<input type="checkbox" name="update1" checked>Please email me updates about your produc
ts.

<input type="checkbox" name="update2">Please email me updates about products from third
-party partners.
</td>
</tr>
<tr>
<td colspan="2" align="center">
<input type="submit" value="SUBMIT">
</td></tr>

</table>
</form>

<?
 require($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");
?>

</body>

Be sure and Save co nt act _f o rm.php.

Now PREVEIW:

ACME, INC.
links go here

Contact ACME Corporation

Name:

Email:

Type of Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

SUBMIT

Even with the extreme simplicity o f our C-Clamp template, this looks much better than it did before.

Take another look at the code:

 require($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

The PHP built- in function require() takes a filename as its paramet er, and imports all the data from that filename into
that exact place within the PHP code. It's as if you had written the code right in.

We can do this with co nt act .php as well.

Switch to contact.php and add the fo llowing green code:

<?php

#Remember, if you place any output before a header() call, you'll get an error.
#We used the superglobal $_GET here instead of the register globals, for safety
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixed
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&error=1"
;
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}
extract($_GET, EXTR_PREFIX_SAME, "get");
#construct email message
#we want a deadline 2 days after the message date.
$deadline_array = getdate();
$deadline_day = $deadline_array['mday'] + 2;

$deadline_stamp = mktime($deadline_array['hours'],$deadline_array['minutes'],$deadline_
array['seconds'],
 $deadline_array['mon'],$deadline_day,$deadline_array['year']);
$deadline_str = date("F d, Y", $deadline_stamp);

$email_message = "Message Date: ".date("F d, Y h:i a")."

 Please reply by: ".$deadline_str."

 Name: ".$name."

 Email: ".$email."

 Type of Request: ".$whoami."

 Subject: ".$subject."

 Message: ".$message."

 How you heard about us: ".$found."

 User Agent: ".$_SERVER['HTTP_USER_AGENT']."

 IP Address: ".$_SERVER['HTTP_X_FORWARDED_FOR'];

#construct the email headers
$to = "support@example.com"; //for testing purposes, this should be YOUR email address
.
//We will send the emails from our own server
$from = "anything@yourlogin.oreillystudent.com";

$email_subject = "CONTACT #".time().": ".$_GET['subject'];

$headers = "From: " . $from . "\r\n";
$headers .= 'MIME-Version: 1.0' . "\n"; //these headers will allow our HTML tags to be
 displayed in the email
$headers .= 'Content-type: text/html; charset=iso-8859-1' . "\r\n";

#now mail
mail($to, $email_subject, $email_message, $headers);

 include($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

echo "<h3>Thank you!</h3>";
echo "We'll get back to you by ".$deadline_str.".
";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Message Date: ".date("F d, Y h:i a")."
";

echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWAR
DED_FOR'];

 include($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");

?>

Save co nt act .php. Now when you view co nt act _f o rm.php and submit the form, you should see something like
this:

ACME, INC.
links go here

Thank you!

We'll get back to you by June 07, 2006.
Here is a copy of your request:

CONTACT #1149489921:
Message Date: June 05, 2006 01:45 pm
Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can/'t get the darn thing to work!
How you heard about us: other
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en)
AppleWebKit /418 (KHTML, like Gecko) Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

Note This time, instead o f require() we used include() . What's the difference? If fo r some reason the URL
doesn't exist, require() will give you a PHP error, whereas include() will just skip that URL.

Reading and Writing Files
Now that we've got the web interface looking better, let's work on the email. In this case, there's no clear-cut beginning
and ending template, rather, the data is peppered throughout the email. So if we want to use a template with this, we'll
have to find a way to insert the data into the template, instead o f the o ther way around.

First, let's see how we want the template to look. Switch to HT ML, and create a t ext -o nly f ile that looks something
like below.

Make sure you're in HTML, and type the fo llowing into a new file:

You have just received a customer email. Please respond to this email by #DEADLINE#.
Details are below:

<table>
<tr><td width="100" align="right">Message Type: </td><td>#WHOAMI#</td></tr>
<tr><td width="100" align="right">Message Date: </td><td>#DATE#</td></tr>
<tr><td width="100" align="right">Name: </td><td>#NAME#</td></tr>
<tr><td width="100" align="right">Email: </td><td>#EMAIL#</td></tr>
<tr><td width="100" align="right">IP Address: </td><td>#IP#</td></tr>
<tr><td width="100" align="right">Platform: </td><td>#AGENT#</td></tr>
</table>

Subject: #SUBJECT#

#MESSAGE#

This customer found us through #FOUND#.

#CONTACT#

Save this text file, and call it email_t emplat e .t xt . Now let's go back to co nt act .php.

Switch to contact.php and make the fo llowing changes, in green:

<?php

function mail_message($data_array, $template_file, $deadline_str) {

 #get template contents, and replace variables with data
 $email_message = file_get_contents($template_file);
 $email_message = str_replace("#DEADLINE#", $deadline_str, $email_message);
 $email_message = str_replace("#WHOAMI#", $data_array['whoami'], $email_message);
 $email_message = str_replace("#DATE#", date("F d, Y h:i a"), $email_message);
 $email_message = str_replace("#NAME#", $data_array['name'], $email_message);
 $email_message = str_replace("#EMAIL#", $data_array['email'], $email_message);
 $email_message = str_replace("#IP#", $_SERVER['HTTP_X_FORWARDED_FOR'], $email_messag
e);
 $email_message = str_replace("#AGENT#", $_SERVER['HTTP_USER_AGENT'], $email_message)
;
 $email_message = str_replace("#SUBJECT#", $data_array['subject'], $email_message);
 $email_message = str_replace("#MESSAGE#", $data_array['message'], $email_message);
 $email_message = str_replace("#FOUND#", $data_array['found'], $email_message);

 #include whether or not to contact the customer with offers in the future
 $contact = "";
 if (isset($data_array['update1'])) {
 $contact = $contact." Please email updates about your products.
";
 }
 if (isset($data_array['update2'])) {
 $contact = $contact." Please email updates about products from third-party partne
rs.
";
 }
 $email_message = str_replace("#CONTACT#", $contact, $email_message);

 #construct the email headers
 $to = "support@example.com"; //for testing purposes, this should be YOUR email addr
ess.
 $from = $data_array['email'];
 $email_subject = "CONTACT #".time().": ".$data_array['subject'];

 $headers = "From: " . $from . "\r\n";
 $headers .= 'MIME-Version: 1.0' . "\n"; //these headers will allow our HTML tags to
 be displayed in the email
 $headers .= 'Content-type: text/html; charset=iso-8859-1' . "\r\n";

 #now mail
 mail($to, $email_subject, $email_message, $headers);

}

#Remember, if you place any output before a header() call, you'll get an error.
#We used the superglobal $_GET here instead of the register globals, for safety
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixed
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&error=1"
;
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

extract($_GET, EXTR_PREFIX_SAME, "get");

#we want a deadline 2 days after the message date.
 $deadline_array = getdate();
 $deadline_day = $deadline_array['mday'] + 2;

 $deadline_stamp = mktime($deadline_array['hours'],$deadline_array['minutes'],$deadli
ne_array['seconds'],
 $deadline_array['mon'],$deadline_day,$deadline_array['year']);
 $deadline_str = date("F d, Y", $deadline_stamp);

//DOCUMENT_ROOT is the file path leading up to the template name.
mail_message($_GET, $_SERVER['DOCUMENT_ROOT']."/email_template.txt", $deadline_str);

include($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

echo "<h3>Thank you!</h3>";
echo "We'll get back to you by ".$deadline_str.".
";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

include($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");

?>

Save co nt act .php, then view and submit the form in co nt act _f o rm.php. If you used your own email address as the
$t o variable, you should have received an email in your INBOX like before. However, this time it should look a little
better.

You should have received an email like this:

Date: Thu, 8 Jun 2006 17:03:11 -0500
From: trish@myemail.com
To: support@acmeinc.com
Subject: CONTACT #1149804191: Please help!

You have just received a customer email. Please respond to this email by June 10, 2006.
Details are below:

 Message Type: support
 Message Date: June 08, 2006 05:03 pm
 Name: Trish
 Email: trish@myemail.com
 IP Address: 12.149.132.162
 Platform: Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/418 (KHTML, like Gecko) Safari/417.9.2

Subject: Please help!

I can't get the darn thing to work!

This customer found us through wordofmouth.
Please email updates about your products.

Take another look at the code:

function mail_message($data_array, $template_file, $deadline_str) {

 #get template contents, and replace variables with data
 $email_message = file_get_contents($template_file);
 $email_message = str_replace("#DEADLINE#", $deadline_str, $email_message);
 $email_message = str_replace("#WHOAMI#", $data_array['whoami'], $email_message);

.

.

.
}
.
.
.
mail_message($_GET, $_SERVER['DOCUMENT_ROOT']."/email_template.txt", $deadline_str);

Here, we created a function called mail_message() , which takes three parameters -- $dat a_array, $t emplat e_f ile ,
and $deadline_st r. $dat a_array contains all the form data, because we pass the $_GET superglobal array into it.
$t emplat e_f ile is the full path to the template file we want to use - in our case, we passed in the path to
"email_t emplat e .t xt " that we created earlier. And $deadline_st r is the formatted string o f the date by which we
want the message answered.

We used the built- in PHP function f ile_get _co nt ent s() to import our email template file into a string,
$email_message . Then, one by one, we replace each o f our template variables with the corresponding form data,
using the built- in function st r_replace() . Go to php.net to read more about file_get_contents() or str_replace().

By making the support email easier to read -- and obtaining as much user information as possible -- you've improved
efficiency in Acme's customer support process. Go ahead, demand a raise. You deserve it.

Allowing Users to Download Files
To make things a little more interesting, it turns out that Acme wants every customer who sends in a support email to

http://us3.php.net/manual/en/function.file-get-contents.php
http://us3.php.net/manual/en/function.str-replace.php

be allowed to download its informational brochure, a PDF document.

Now, technically you could just include a link to the PDF document itself, if the document is in a web-accessible
directory. However, most o f the time corporations don't want their downloadable files to be in a public area for anyone
and everyone to download. This is especially true when electronic documents are for purchase, like marketing reports
or copyrighted materials.

In your case, we've placed the brochure, called acme_bro chure.pdf , in a hidden directory called .php_f iles/ within
your account. You can't view this file through the web, but you need to allow web users o f your choosing to download
it. What do you do?

In PHP, create a new file, called download.php:

<?php

$filepath = $_SERVER['DOCUMENT_ROOT']."/.php_files/acme_brochure.pdf";
if (file_exists($filepath)) {
 header("Content-Type: application/force-download");
 header("Content-Disposition:filename=\"brochure.pdf\"");
 $fd = fopen($filepath,'rb');
 fpassthru($fd);
 fclose($fd);
}

?>

Save do wnlo ad.php.

Now, switch back to contact.php and make the fo llowing changes, in green and blue:

<?php

function mail_message($data_array, $template_file, $deadline_str) {

 #get template contents, and replace variables with data
 $email_message = file_get_contents($template_file);
 $email_message = str_replace("#DEADLINE#", $deadline_str, $email_message);
 $email_message = str_replace("#WHOAMI#", $data_array['whoami'], $email_message);
 $email_message = str_replace("#DATE#", date("F d, Y h:i a"), $email_message);
 $email_message = str_replace("#NAME#", $data_array['name'], $email_message);
 $email_message = str_replace("#EMAIL#", $data_array['email'], $email_message);
 $email_message = str_replace("#IP#", $_SERVER['HTTP_X_FORWARDED_FOR'], $email_messag
e);
 $email_message = str_replace("#AGENT#", $_SERVER['HTTP_USER_AGENT'], $email_message)
;
 $email_message = str_replace("#SUBJECT#", $data_array['subject'], $email_message);
 $email_message = str_replace("#MESSAGE#", $data_array['message'], $email_message);
 $email_message = str_replace("#FOUND#", $data_array['found'], $email_message);

 #include whether or not to contact the customer with offers in the future
 $contact = "";
 if (isset($data_array['update1'])) {
 $contact = $contact." Please email updates about your products.
";
 }
 if (isset($data_array['update2'])) {
 $contact = $contact." Please email updates about products from third-party partne
rs.
";
 }
 $email_message = str_replace("#CONTACT#", $contact, $email_message);

 #construct the email headers
 $to = "support@example.com"; //for testing purposes, this should be YOUR email addr
ess.
 $from = $data_array['email'];
 $email_subject = "CONTACT #".time().": ".$data_array['subject'];

 $headers = "From: " . $from . "\r\n";
 $headers .= 'MIME-Version: 1.0' . "\n"; //these headers will allow our HTML tags to
 be displayed in the email
 $headers .= 'Content-type: text/html; charset=iso-8859-1' . "\r\n";

 #now mail
 mail($to, $email_subject, $email_message, $headers);

}

#Remember, if you place any output before a header() call, you'll get an error.
#We used the superglobal $_GET here instead of the register globals, for safety
if (!($_GET['name'] && $_GET['email'] && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixed
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&error=1"
;
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

extract($_GET, EXTR_PREFIX_SAME, "get");

#we want a deadline 2 days after the message date.
 $deadline_array = getdate();
 $deadline_day = $deadline_array['mday'] + 2;

 $deadline_stamp = mktime($deadline_array['hours'],$deadline_array['minutes'],$deadli
ne_array['seconds'],
 $deadline_array['mon'],$deadline_day,$deadline_array['year']);
 $deadline_str = date("F d, Y", $deadline_stamp);

//DOCUMENT_ROOT is the file path leading up to the template name.
mail_message($_GET, $_SERVER['DOCUMENT_ROOT']."/email_template.txt", $deadline_str);

include($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

echo "<h3>Thank you!</h3>";
echo "We'll get back to you by ".$deadline_str.".
";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".$name."
";
echo "Email: ".$email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Download our PDF brochure!
<?

include($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");

?>

Save co nt act .php, then view co nt act _f o rm.php and submit the form:

It should look something like this:

ACME, INC.
links go here

Thank you!

We'll get back to you by June 10, 2006.
Here is a copy of your request:

CONTACT #1149809625:
Message Date: June 08, 2006 06:33 pm
Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please Help!
Message: I can/'t get the darn thing to work!
How you heard about us: wordofmouth
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en)
AppleWebKit /418 (KHTML, like Gecko) Safari/417.9.2
The IP address of the computer you're working on is 63.171.219.74

Download our PDF brochure!

Now click the link. Did the PDF file download to your computer? You may have seen something like this:

How were we able to do that? Take another look at the code in download.php:

OBSERVE:

$filepath = $_SERVER['DOCUMENT_ROOT']."/.php_files/acme_brochure.pdf";
if (file_exists($filepath)) {
 header("Content-Type: application/force-download");
 header("Content-Disposition:filename=\"brochure.pdf\"");
 $fd = fopen($filepath,'rb');
 fpassthru($fd);
 fclose($fd);
}

First, the built- in function f ile_exist s() does exactly what it says - it returns TRUE or FALSE based upon the existence
of the parameter $f ilepat h, which we set to the path o f Acme's hidden PDF brochure in our account. Since it does
exist, we use header() to output two HT T P headers. The header "Co nt ent -T ype" is extremely important, as it tells
the web browser that we are preparing to download data that is NOT in an HTML or text fo rmat, but in fact an
application. Find out what happens if you leave this header out. The header "Co nt ent -Dispo sit io n" is optional, but
we used it to create a generic name for the downloaded file.

Note
In the case o f PDF files, you can also use the header "Co nt ent -T ype: applicat io n/pdf " . What's the
difference? Some browsers allow PDF files to be opened within the browser itself, without having to
download them to the computer's hard drive. Try it out and see what happens in your own browser.

Then, the built- in function f o pen() creates a f ile st ream po inting to our acme_brochure.pdf file, and binds it to the
handle $f d. The parameter ' rb' specifies that the file should be opened in read-o nly, binary mo de -- binary, again,
because it's not a text file. f passt hru() then sends all the file data through to the o ut put buf f er -- and because we
specified through header() what the browser should do with that output, this launches your computer's download
manager. f clo se() simply closes the f ile st ream $f d, to clean things up.

Don't fo rget to Save your work and hand in your assignment s from your syllabus. See you in the next lesson!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Cookies and Sessions

Learning about co o kies and sessio ns is essential fo r programming PHP in the 21st century. You see, web users just aren't as
patient as they used to be - they want websites that are incredibly easy for them to use and reuse, without having to repeat
themselves over and over again. And their attention spans are shorter as well, meaning corporate websites in particular must
compete by targeting the user as specifically as possible.

"Know Thy User", as they say. But how?

Using Cookies

Mmmm, cookies. Well, no , not those kinds o f cookies. Although we would certainly revisit a web
site fo r free cookies any day, unfortunately, downloading choco late-chip goodness just hasn't
been invented yet. Sigh...

Okay, so what are bro wser co o kies? Let's find out. Fire up CodeRunner in PHP , and open your files
co nt act _f o rm.php and co nt act .php.

Add the fo llowing to contact_form.php, in green and blue:

<?php

require($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

if ($_GET['error'] == "1") {
 $error_code = 1; //this means that there's been an error and we need to notify the
customer
}

?>

<h3>Contact ACME Corporation</h3>
<?
if ($error_code) {
echo "<div style='color:red'>Please help us with the following:</div>";
}
?>
<form method="GET" action="contact.php">
<table>
<tr>
<td align="right">
Name:
</td>
<td align="left">
<?
if ($_COOKIE['name']) {
 echo $_COOKIE['name'];
}
else {
?>
<input type="text" size="25" name="name" value="<? echo $_GET['name']; ?>" />
<input type="checkbox" name="remember" /> Remember me on this computer
<?
}
if ($error_code && !($_GET['name'] || $_COOKIE['name'])) {
 echo "Please include your name.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<?
if ($_COOKIE['email']) {
 echo $_COOKIE['email'];
}
else {
?>
<input type="text" size="25" name="email" value="<? echo $_GET['email']; ?>" />
<?
}
if ($error_code && !($_GET['email'] || $_COOKIE['email'])) {
 echo "Please include your email address.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Type of Request:
</td>

<td align="left">
<select name="whoami">
<option value="" />Please choose...
<option value="newcustomer"<?
if ($_GET['whoami'] == "newcustomer") {
 echo " selected";
}
?> />I am interested in becoming a customer.
<option value="customer"<?
if ($_GET['whoami'] == "customer") {
 echo " selected";
}
?> />I am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
 echo " selected";
}
?> />I need technical help using the website.
<option value="billing"<?
if ($_GET['whoami'] == "billing") {
 echo " selected";
}
?> />I have a billing question.
</select>
<?
if ($error_code && !($_GET['whoami'])) {
 echo "Please choose a request type.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="<? echo $_GET['subject']; ?
>" />
<?
if ($error_code && !($_GET['subject'])) {
 echo "Please add a subject for your request.";
}
?>
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">
<textarea name="message" cols="50" rows="8">
<? echo $_GET['message']; ?>
</textarea>
<?
if ($error_code && !($_GET['message'])) {
 echo "Please fill in a message for us.";
}
?>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article

<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>
</tr>
<tr>
<td colspan="2">
<input type="checkbox" name="update1" checked="checked" />Please email me updates about
 your products.

<input type="checkbox" name="update2" />Please email me updates about products from thi
rd-party partners.
</td>
</tr>
<tr>
<td colspan="2" align="center">
<input type="submit" value="SUBMIT" />
</td></tr>
</table>
</form>

<?
 require($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");
?>

Be sure and Save co nt act _f o rm.php, then Preview.

You should see something like this:

ACME, INC.
links go here

Contact ACME Corporation

Name: Remember me on this
computer

Email:
Type of

Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

Now, switch back to contact.php and make the fo llowing changes, in green:

<?php

function mail_message($data_array, $template_file, $deadline_str, $myname, $myemail) {

 #get template contents, and replace variables with data
 $email_message = file_get_contents($template_file);
 $email_message = str_replace("#DEADLINE#", $deadline_str, $email_message);
 $email_message = str_replace("#WHOAMI#", $data_array['whoami'], $email_message);
 $email_message = str_replace("#DATE#", date("F d, Y h:i a"), $email_message);
 $email_message = str_replace("#NAME#", $myname, $email_message);
 $email_message = str_replace("#EMAIL#", $myemail, $email_message);
 $email_message = str_replace("#IP#", $_SERVER['HTTP_X_FORWARDED_FOR'], $email_messag
e);
 $email_message = str_replace("#AGENT#", $_SERVER['HTTP_USER_AGENT'], $email_message)
;
 $email_message = str_replace("#SUBJECT#", $data_array['subject'], $email_message);
 $email_message = str_replace("#MESSAGE#", $data_array['message'], $email_message);
 $email_message = str_replace("#FOUND#", $data_array['found'], $email_message);

 #include whether or not to contact the customer with offers in the future
 $contact = "";
 if (isset($data_array['update1'])) {
 $contact = $contact." Please email updates about your products.
";
 }
 if (isset($data_array['update2'])) {
 $contact = $contact." Please email updates about products from third-party partne
rs.
";
 }
 $email_message = str_replace("#CONTACT#", $contact, $email_message);

 #construct the email headers
 $to = " ReplaceWithYourOwnEmailAddress@oreillyschool.com"; //for testing purposes,
this should be YOUR email address.
 $from = $data_array['email'];
 $email_subject = "CONTACT #".time().": ".$data_array['subject'];

$headers = "From: " . $from . "\r\n";
$headers .= 'MIME-Version: 1.0' . "\n";
$headers .= 'Content-type: text/html; charset=iso-8859-1' . "\r\n"; #now mail
 mail($to, $email_subject, $email_message, $headers);

}

$customer_name = $_COOKIE['name'];
if (!($customer_name)) {
 $customer_name = $_GET['name'];
}
$customer_email = $_COOKIE['email'];
if (!($customer_email)) {
 $customer_email = $_GET['email'];
}

#Remember, if you place any output before a header() call, you'll get an error.
#We used the superglobal $_GET here
if (!($customer_name && $customer_email && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixed
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&error=1"

;
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

#we want a deadline 2 days after the message date.
 $deadline_array = getdate();
 $deadline_day = $deadline_array['mday'] + 2;

 $deadline_stamp = mktime($deadline_array['hours'],$deadline_array['minutes'],$deadli
ne_array['seconds'],
 $deadline_array['mon'],$deadline_day,$deadline_array['year']);
 $deadline_str = date("F d, Y", $deadline_stamp);

if (isset($_GET['remember'])) {
 #the customer wants us to remember him/her for next time
 ### set errcode cookie
 /*
 cookie expires in one year
 365 days in a year
 24 hours in a day
 60 minutes in an hour
 60 seconds in a minute
 */
 $mytime = time() + (365 * 24 * 60 * 60);
 setcookie("name",$customer_name,$mytime);
 setcookie("email",$customer_email,$mytime);
}

//DOCUMENT_ROOT is the file path leading up to the template name.
mail_message($_GET, $_SERVER['DOCUMENT_ROOT']."/email_template.txt", $deadline_str, $cu
stomer_name, $customer_email);

include($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

extract($_GET, EXTR_PREFIX_SAME, "get");

echo "<h3>Thank you!</h3>";
echo "We'll get back to you by ".$deadline_str.".
";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".$customer_name."
";
echo "Email: ".$customer_email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Download our PDF brochure!
<?

include($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");

?>

Save co nt act .php, switch to co nt act _f o rm.php, and Preview. This time, however, when you submit the form, be
sure to check the box that says "Remember me on this computer."

ACME, INC.
links go here

Thank you!

We'll get back to you by June 11, 2006.
Here is a copy of your request:

CONTACT #1149880113:
Message Date: June 09, 2006 02:08 pm
Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can/'t get the darn thing to work!
How you heard about us: wordofmouth
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O;
en-US; rv:1.7.12) Gecko/20050915 Firefox/1.0.7
The IP address of the computer you're working on is 63.171.219.74

Download our PDF brochure!

Looks pretty much the same as before. What's changed? To find out, now go back to co nt act _f o rm.php and
RELOAD the page:

ACME, INC.
links go here

Contact ACME Corporation

Name: Trish
Email: t rish@myemail.com

Type of Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

SUBMIT

And there we are! The form is indeed remembering us, and even if you exit your browser entirely and come back, your
name and email would still be there. But how were we able to do it? Using co o kies.

Take another look at the code in contact.php:

if (isset($_GET['remember'])) {
 #the customer wants us to remember him/her for next time
 ### set errcode cookie
 /*
 cookie expires in one year
 365 days in a year
 24 hours in a day
 60 minutes in an hour
 60 seconds in a minute
 */
 $mytime = time() + (365 * 24 * 60 * 60);
 setcookie("name",$customer_name,$mytime);
 setcookie("email",$customer_email,$mytime);
}

Here, we're using the built- in PHP function set co o kie() with three parameters: "name" and "email" are the names
we're giving the respective cookies, and $cust o mer_name and $cust o mer_email are the values that we got from
the $_GET superglobal. $myt ime is the t imest amp at which we want the cookies to expire - since it's measured in
seconds, we simply took t ime() and added enough seconds to make 1 year.

Bro wser co o kies are simply variables that are stored within the user's browser on his/her computer. If you look in
your own browser preferences, you can actually view all the cookies that are set:

Now take another look at the code in contact_form.php

if ($_COOKIE['name']) {
 echo $_COOKIE['name'];
}

Just like $_GET and $_POST store values set by the user, and $_SERVER and $_ENV store values set by the
environment, $_COOKIE is a superglo bal array -- but this time the values being stored are set by you, the
programmer.

Before cookies, once a user left a website, that site had no way recognizing that user when she came back. Basically,
the user had to start from scratch every time. No shopping carts, personalized home pages, or pre-filled forms. So as
you can see, introducing cookies opened up a world o f power and convenience that have made them invaluable to
web programming.

Knowing the User Through Sessions
Of course, there are a couple o f downfalls to using cookies. One is that different browsers have different restrictions on
the number and size o f cookies - some allow unlimited numbers but small sizes, o thers allow large cookies but only
up to 10.

But the main problem with cookies is privacy. Anyone who uses the same browser that you used - unless you deleted
your cookies before you left - can now view your name and email in the browser cookie list. Think if that had been even
more sensitive information, like usernames or financial information. Yikes! Let's try fixing this.

Add the fo llowing to contact_form.php, in green:

<?php

#start the session before any output
session_start();

require($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

if ($_GET['error'] == "1") {
 $error_code = 1; //this means that there's been an error and we need to notify the
customer
}

?>

<h3>Contact ACME Corporation</h3>
<?
if ($error_code) {
echo "<div style='color:red'>Please help us with the following:</div>";
}
?>
<form method="GET" action="contact.php">
<table>
<tr>
<td align="right">
Name:
</td>
<td align="left">
<?
if ($_SESSION['name']) {
 echo $_SESSION['name'];
}
else {
?>
<input type="text" size="25" name="name" value="<? echo $_GET['name']; ?>" />
<input type="checkbox" name="remember" /> Remember me on this computer
<?
}
if ($error_code && !($_GET['name'] || $_SESSION['name'])) {
 echo "Please include your name.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<?
if ($_SESSION['email']) {
 echo $_SESSION['email'];
}
else {
?>
<input type="text" size="25" name="email" value="<? echo $_GET['email']; ?>" />
<?
}
if ($error_code && !($_GET['email'] || $_SESSION['email'])) {
 echo "Please include your email address.";
}
?>
</td>
</tr>
<tr>
<td align="right">

Type of Request:
</td>
<td align="left">
<select name="whoami">
<option value="" />Please choose...
<option value="newcustomer"<?
if ($_GET['whoami'] == "newcustomer") {
 echo " selected";
}
?> />I am interested in becoming a customer.
<option value="customer"<?
if ($_GET['whoami'] == "customer") {
 echo " selected";
}
?> />I am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
 echo " selected";
}
?> />I need technical help using the website.
<option value="billing"<?
if ($_GET['whoami'] == "billing") {
 echo " selected";
}
?> />I have a billing question.
</select>
<?
if ($error_code && !($_GET['whoami'])) {
 echo "Please choose a request type.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="<? echo $_GET['subject']; ?
>" />
<?
if ($error_code && !($_GET['subject'])) {
 echo "Please add a subject for your request.";
}
?>
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">
<textarea name="message" cols="50" rows="8">
<? echo $_GET['message']; ?>
</textarea>
<?
if ($error_code && !($_GET['message'])) {
 echo "Please fill in a message for us.";
}
?>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article

<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>
</tr>
<tr>
<td colspan="2">
<input type="checkbox" name="update1" checked="checked" />Please email me updates about
 your products.

<input type="checkbox" name="update2" />Please email me updates about products from thi
rd-party partners.
</td>
</tr>
<tr>
<td colspan="2" align="center">
<input type="submit" value="SUBMIT" />
</td></tr>
</table>
</form>

<?
 require($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");
?>

Be sure to Save co nt act _f o rm.php.

Now switch to contact.php and make the fo llowing changes, in green:

<?php

function mail_message($data_array, $template_file, $deadline_str, $myname, $myemail) {

 #get template contents, and replace variables with data
 $email_message = file_get_contents($template_file);
 $email_message = str_replace("#DEADLINE#", $deadline_str, $email_message);
 $email_message = str_replace("#WHOAMI#", $data_array['whoami'], $email_message);
 $email_message = str_replace("#DATE#", date("F d, Y h:i a"), $email_message);
 $email_message = str_replace("#NAME#", $myname, $email_message);
 $email_message = str_replace("#EMAIL#", $myemail, $email_message);
 $email_message = str_replace("#IP#", $_SERVER['HTTP_X_FORWARDED_FOR'], $email_messag
e);
 $email_message = str_replace("#AGENT#", $_SERVER['HTTP_USER_AGENT'], $email_message)
;
 $email_message = str_replace("#SUBJECT#", $data_array['subject'], $email_message);
 $email_message = str_replace("#MESSAGE#", $data_array['message'], $email_message);
 $email_message = str_replace("#FOUND#", $data_array['found'], $email_message);

 #include whether or not to contact the customer with offers in the future
 $contact = "";
 if (isset($data_array['update1'])) {
 $contact = $contact." Please email updates about your products.
";
 }
 if (isset($data_array['update2'])) {
 $contact = $contact." Please email updates about products from third-party partne
rs.
";
 }
 $email_message = str_replace("#CONTACT#", $contact, $email_message);

 #construct the email headers
 $to = " ReplaceWithYourOwnEmailAddress@oreillyschool.com"; //for testing purposes,
this should be YOUR email address.
 $from = $data_array['email'];
 $email_subject = "CONTACT #".time().": ".$data_array['subject'];

$headers = "From: " . $from . "\r\n";
$headers .= 'MIME-Version: 1.0' . "\n";
$headers .= 'Content-type: text/html; charset=iso-8859-1' . "\r\n"; #now mail
 mail($to, $email_subject, $email_message, $headers);

}

#start the session
session_start();

$customer_name = $_SESSION['name'];
if (!($customer_name)) {
 $customer_name = $_GET['name'];
}

$customer_email = $_SESSION['email'];
if (!($customer_email)) {
 $customer_email = $_GET['email'];
}

#Remember, if you place any output before a header() call, you'll get an error.
#We used the superglobal $_GET here
if (!($customer_name && $customer_email && $_GET['whoami']
 && $_GET['subject'] && $_GET['message'])) {

 #with the header() function, no output can come before it.
 #echo "Please make sure you've filled in all required information.";

 $query_string = $_SERVER['QUERY_STRING'];
 #add a flag called "error" to tell contact_form.php that something needs fixed
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php?".$query_string."&error=1"
;
 header("Location: ".$url);
 exit(); //stop the rest of the program from happening

}

#we want a deadline 2 days after the message date.
 $deadline_array = getdate();
 $deadline_day = $deadline_array['mday'] + 2;

 $deadline_stamp = mktime($deadline_array['hours'],$deadline_array['minutes'],$deadli
ne_array['seconds'],
 $deadline_array['mon'],$deadline_day,$deadline_array['year']);
 $deadline_str = date("F d, Y", $deadline_stamp);

if (isset($_GET['remember'])) {
 #the customer wants us to remember him/her for next time
 $_SESSION['name'] = $customer_name;
 $_SESSION['email'] = $customer_email;
}

//DOCUMENT_ROOT is the file path leading up to the template name.
mail_message($_GET, $_SERVER['DOCUMENT_ROOT']."/email_template.txt", $deadline_str, $cu
stomer_name, $customer_email);

include($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

extract($_GET, EXTR_PREFIX_SAME, "get");

echo "<h3>Thank you!</h3>";
echo "We'll get back to you by ".$deadline_str.".
";
echo "Here is a copy of your request:

";
echo "CONTACT #".time().":
";
echo "Message Date: ".date("F d, Y h:i a")."
";
echo "Name: ".$customer_name."
";
echo "Email: ".$customer_email."
";
echo "Type of Request: ".$whoami."
";
echo "Subject: ".$subject."
";
echo "Message: ".$message."
";
echo "How you heard about us: ".$found."
";

for ($i = 1; $i <= 2; $i++) {
 $element_name = "update".$i;
 echo $element_name.": ";
 echo $$element_name;
 echo "
";
}

echo "You are currently working on ".$_SERVER['HTTP_USER_AGENT'];
echo "
The IP address of the computer you're working on is ".$_SERVER['HTTP_X_FORWA
RDED_FOR'];

?>

Download our PDF brochure!
<?

include($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");

?>

Save co nt act .php, then switch to contact_form.php and Preview. You'll no tice that you have to re-enter your name

and email address again, but not fo r long. Be sure to click the "Remember me on this computer" checkbox when you
submit the form. What did you get?

It should look something like this:

ACME, INC.
links go here

Thank you!

We'll get back to you by June 11, 2006.
Here is a copy of your request:

CONTACT #1149880113:
Message Date: June 09, 2006 02:08 pm
Name: Trish
Email: t rish@myemail.com
Type of Request: support
Subject : Please help!
Message: I can\'t get the darn thing to work!
How you heard about us: wordofmouth
update1: on
update2:
You are current ly working on Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O;
en-US; rv:1.7.12) Gecko/20050915 Firefox/1.0.7
The IP address of the computer you're working on is 63.171.219.74

Download our PDF brochure!

Again, it looks exactly the same as always. But, if you go back to co nt act _f o rm.php and RELOAD, you'll get:

Something like this:

ACME, INC.
links go here

Contact ACME Corporation

Name: Trish
Email: t rish@myemail.com

Type of Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

Yes, it's exactly the same output as when you used co o kies -- your name and email address are now magically
saved within the browser.

So what's the difference? If you check out your browser's preferences and view the cookies stored there, you won't
see your name and email address in there anymore. Instead, you'll see something like this:

Take another look at the code in contact.php:

#start the session
session_start();

$customer_name = $_SESSION['name'];
if (!($customer_name)) {
 $customer_name = $_GET['name'];
}

$customer_email = $_SESSION['email'];
if (!($customer_email)) {
 $customer_email = $_GET['email'];
}
.
.
.
if (isset($_GET['remember'])) {
 #the customer wants us to remember him/her for next time
 $_SESSION['name'] = $customer_name;
 $_SESSION['email'] = $customer_email;
}

Any time you want to use sessio ns in your PHP script, you must start the session first - using the PHP function
sessio n_st art () . This way, the browser knows to pull up the $_SESSION superglo bal using the SESSION ID that
was set in your browser cookies. Once it's been pulled up, you can not only access the values using $_SESSION,
you can set the values too.

Note It's important to stress that sessio n_st art () must be called bef o re any output - much like header() .

Deleting Sessions

In case someone else visits our site using the same browser, we should give the user a way to end the
session without waiting for it to expire.

Add the fo llowing to contact_form.php, in green and blue:

<?php

if (isset($_GET['delete_session'])) {
 session_start(); //must always use this command to access the session and its
variables
 session_destroy(); //force the session to end

 //Add in a page reload so that the session_destroy() will take effect
 if($_SESSION && $_SESSION['name']){
 $url = "http://".$_SERVER['HTTP_HOST']."/contact_form.php";
 header("Location: ".$url);
 }
}
else {
 #start the session before any output
 session_start();
}

 require($_SERVER['DOCUMENT_ROOT']."/template_top.inc");

if ($_GET['error'] == "1") {
 $error_code = 1; //this means that there's been an error and we need to noti
fy the customer
}

?>

<h3>Contact ACME Corporation</h3>
<?
if ($error_code) {
 echo "<div style='color:red'>Please help us with the following:</div>";
}
?>
<form method="GET" action="contact.php">
<table>
<tr>
<td align="right">
Name:
</td>
<td align="left">
<?
if ($_SESSION['name']) {
 echo $_SESSION['name'];
?>
 Not <? echo $_SESSION['name']; ?>?<
/a>
<?
}
else {
?>
<input type="text" size="25" name="name" value="<? echo $_GET['name']; ?>" />
<input type="checkbox" name="remember" /> Remember me on this computer
<?
}
if ($error_code && !($_GET['name'] || $_SESSION['name'])) {
 echo "Please include your name.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Email:
</td><td align="left">
<?

if ($_SESSION['email']) {
 echo $_SESSION['email'];
}
else {
?>
<input type="text" size="25" name="email" value="<? echo $_GET['email']; ?>" />
<?
}
if ($error_code && !($_GET['email'] || $_SESSION['email'])) {
 echo "Please include your email address.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Type of Request:
</td>
<td align="left">
<select name="whoami">
<option value="" />Please choose...
<option value="newcustomer"<?
if ($_GET['whoami'] == "newcustomer") {
 echo " selected";
}
?> />I am interested in becoming a customer.
<option value="customer"<?
if ($_GET['whoami'] == "customer") {
 echo " selected";
}
?> />I am a customer with a general question.
<option value="support"<?
if ($_GET['whoami'] == "support") {
 echo " selected";
}
?> />I need technical help using the website.
<option value="billing"<?
if ($_GET['whoami'] == "billing") {
 echo " selected";
}
?> />I have a billing question.
</select>
<?
if ($error_code && !($_GET['whoami'])) {
 echo "Please choose a request type.";
}
?>
</td>
</tr>
<tr>
<td align="right">
Subject:
</td>
<td align="left">
<input type="text" size="50" max="50" name="subject" value="<? echo $_GET['subje
ct']; ?>" />
<?
if ($error_code && !($_GET['subject'])) {
 echo "Please add a subject for your request.";
}
?>
</td>
</tr>
<tr>
<td align="right" valign="top">
Message:
</td>
<td align="left">

<textarea name="message" cols="50" rows="8">
<? echo $_GET['message']; ?>
</textarea>
<?
if ($error_code && !($_GET['message'])) {
 echo "Please fill in a message for us.";
}
?>
</td>
</tr>
<tr>
<td colspan="2" align="left">
How did you hear about us?

<input type="radio" name="found" value="wordofmouth" />Word of Mouth

<input type="radio" name="found" value="search" />Online Search

<input type="radio" name="found" value="article" />Printed publication/article<b
r/>
<input type="radio" name="found" value="website" />Online link/article

<input type="radio" name="found" value="other" />Other

</td>
</tr>
<tr>
<td colspan="2">
<input type="checkbox" name="update1" checked="checked" />Please email me update
s about your products.

<input type="checkbox" name="update2" />Please email me updates about products f
rom third-party partners.
</td>
</tr>
<tr>
<td colspan="2" align="center">
<input type="submit" value="SUBMIT" />
</td></tr>
</table>
</form>

<?
 require($_SERVER['DOCUMENT_ROOT']."/template_bottom.inc");
?>

Be sure to Save co nt act _f o rm.php, then Preview.

It should look something like this:

ACME, INC.
links go here

Contact ACME Corporation

Name: Trish Not Trish?
Email: t rish@myemail.com

Type of Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.
Please email me updates about products f rom third-party partners.

Try clicking the link to see what happens:

ACME, INC.
links go here

Contact ACME Corporation

Name: Remember me on this
computer

Email:
Type of

Request: Please choose...

Subject :
Message:

How did you hear about us?

Word of Mouth
Online Search
Printed publicat ion/art icle
Online link/art icle
Other

Please email me updates about your products.

Ending the session was pretty straightforward, because session_destroy() will destroy all the session data
for a user. If we wanted to delete just one session variable, we would use
unset ($_SESSION['so me_var']) .

Congratulations! You've now learned the PHP skills needed to make a vast range o f robust, commercial applications for the
web. Are you ready for those skills to be tested? Make sure you have Saved your work and handed in the assignment s fo r this
lesson. Then, it's time for your f inal pro ject .

Good luck! We know you can do it.

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Final Project

Final Project
The overall goal o f this pro ject is to create a shopping cart, with products, prices, registration, and a checkout area. You
can make this shopping cart any way you wish.

For the sake o f evaluation, try to include as many elements discussed in this course as you can. For instance, you
should use arrays for products, functions for various program tasks, template files, fo rm validation, and
cookies/sessions for cart persistence. You are encouraged to observe good programming practices, with comments,
code reusability and readability.

You can hand in up to five files, but you don't have to create that many if you don't want to .

Be creative and have fun! You want to present yourself in a pro fessional yet friendly way, so feel free to express
yourself!

Copyright © 1998-2014 O'Reilly Media, Inc.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
See http://creativecommons.org/licenses/by-sa/3.0/legalcode for more information.

http://creativecommons.org/licenses/by-sa/3.0/legalcode

